Cargando…

Terahertz-induced acceleration of massive Dirac electrons in semimetal bismuth

Dirac-like electrons in solid state have been of great interest since they exhibit many peculiar physical behaviors analogous to relativistic mechanics. Among them, carriers in graphene and surface states of topological insulators are known to behave as massless Dirac fermions with a conical band st...

Descripción completa

Detalles Bibliográficos
Autores principales: Minami, Yasuo, Araki, Kotaro, Dao, Thang Duy, Nagao, Tadaaki, Kitajima, Masahiro, Takeda, Jun, Katayama, Ikufumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4629143/
https://www.ncbi.nlm.nih.gov/pubmed/26522668
http://dx.doi.org/10.1038/srep15870
Descripción
Sumario:Dirac-like electrons in solid state have been of great interest since they exhibit many peculiar physical behaviors analogous to relativistic mechanics. Among them, carriers in graphene and surface states of topological insulators are known to behave as massless Dirac fermions with a conical band structure in the two-dimensional momentum space, whereas electrons in semimetal bismuth (Bi) are expected to behave as massive Dirac-like fermions in the three-dimensional momentum space, whose dynamics is of particular interest in comparison with that of the massless Dirac fermions. Here, we demonstrate that an intense terahertz electric field transient accelerates the massive Dirac-like fermions in Bi from classical Newtonian to the relativistic regime; the electrons are accelerated approaching the effective “speed of light” with the “relativistic” beta β = 0.89 along the asymptotic linear band structure. As a result, the effective electron mass is enhanced by a factor of 2.4.