Cargando…

Subcellular Localization of Matrin 3 Containing Mutations Associated with ALS and Distal Myopathy

BACKGROUND: Mutations in Matrin 3 [MATR3], an RNA- and DNA-binding protein normally localized to the nucleus, have been linked to amyotrophic lateral sclerosis (ALS) and distal myopathies. In the present study, we have used transient transfection of cultured cell lines to examine the impact of diffe...

Descripción completa

Detalles Bibliográficos
Autores principales: Gallego-Iradi, M. Carolina, Clare, Alexis M., Brown, Hilda H., Janus, Christopher, Lewis, Jada, Borchelt, David R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631352/
https://www.ncbi.nlm.nih.gov/pubmed/26528920
http://dx.doi.org/10.1371/journal.pone.0142144
Descripción
Sumario:BACKGROUND: Mutations in Matrin 3 [MATR3], an RNA- and DNA-binding protein normally localized to the nucleus, have been linked to amyotrophic lateral sclerosis (ALS) and distal myopathies. In the present study, we have used transient transfection of cultured cell lines to examine the impact of different disease-causing mutations on the localization of Matrin 3 within cells. RESULTS: Using CHO and human H4 neuroglioma cell models, we find that ALS/myopathy mutations do not produce profound changes in the localization of the protein. Although we did observe variable levels of Matrin 3 in the cytoplasm either by immunostaining or visualization of fluorescently-tagged protein, the majority of cells expressing either wild-type (WT) or mutant Matrin 3 showed nuclear localization of the protein. When cytoplasmic immunostaining, or fusion protein fluorescence, was seen in the cytoplasm, the stronger intensity of staining or fluorescence was usually evident in the nucleus. In ~80% of cells treated with sodium arsenite (Ars) to induce cytoplasmic stress granules, the nuclear localization of WT and F115C mutant Matrin 3 was not disturbed. Notably, over-expression of mutant Matrin 3 did not induce the formation of obvious large inclusion-like structures in either the cytoplasm or nucleus. CONCLUSIONS: Our findings indicate that mutations in Matrin 3 that are associated with ALS and myopathy do not dramatically alter the normal localization of the protein or readily induce inclusion formation.