Cargando…
Getting the most out of RNA-seq data analysis
Background. A common research goal in transcriptome projects is to find genes that are differentially expressed in different phenotype classes. Biologists might wish to validate such gene candidates experimentally, or use them for downstream systems biology analysis. Producing a coherent differentia...
Autores principales: | Khang, Tsung Fei, Lau, Ching Yee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4631466/ https://www.ncbi.nlm.nih.gov/pubmed/26539333 http://dx.doi.org/10.7717/peerj.1360 |
Ejemplares similares
-
clrDV: a differential variability test for RNA-Seq data based on the skew-normal distribution
por: Li, Hongxiang, et al.
Publicado: (2023) -
BingleSeq: a user-friendly R package for bulk and single-cell RNA-Seq data analysis
por: Dimitrov, Daniel, et al.
Publicado: (2020) -
Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization
por: Zhu, Xun, et al.
Publicado: (2017) -
Power analysis and sample size estimation for RNA-Seq differential expression
por: Ching, Travers, et al.
Publicado: (2014) -
Error estimates for the analysis of differential expression from RNA-seq count data
por: Burden, Conrad J., et al.
Publicado: (2014)