Cargando…

Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles

Thermal properties of organic semiconductors play a significant role in the performance and lifetime of organic electronic devices, especially for scaled-up large area applications. Here we employ silver nanoparticles (Ag NPs) to modify the thermal conductivity of the small molecule organic semicond...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Xinyu, Parrish, Kevin D., Malen, Jonathan A., Chan, Paddy K. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632039/
https://www.ncbi.nlm.nih.gov/pubmed/26531766
http://dx.doi.org/10.1038/srep16095
_version_ 1782398948631117824
author Wang, Xinyu
Parrish, Kevin D.
Malen, Jonathan A.
Chan, Paddy K. L.
author_facet Wang, Xinyu
Parrish, Kevin D.
Malen, Jonathan A.
Chan, Paddy K. L.
author_sort Wang, Xinyu
collection PubMed
description Thermal properties of organic semiconductors play a significant role in the performance and lifetime of organic electronic devices, especially for scaled-up large area applications. Here we employ silver nanoparticles (Ag NPs) to modify the thermal conductivity of the small molecule organic semiconductor, dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT). The differential 3-ω method was used to measure the thermal conductivity of Ag-DNTT hybrid thin films. We find that the thermal conductivity of pure DNTT thin films do not vary with the deposition temperature over a range spanning 24 °C to 80 °C. The thermal conductivity of the Ag-DNTT hybrid thin film initially decreases and then increases when the Ag volume fraction increases from 0% to 32%. By applying the effective medium approximation to fit the experimental results of thermal conductivity, the extracted thermal boundary resistance of the Ag-DNTT interface is 1.14 ± 0.98 × 10(−7) m(2)-K/W. Finite element simulations of thermal conductivity for realistic film morphologies show good agreement with experimental results and effective medium approximations.
format Online
Article
Text
id pubmed-4632039
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-46320392015-12-07 Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles Wang, Xinyu Parrish, Kevin D. Malen, Jonathan A. Chan, Paddy K. L. Sci Rep Article Thermal properties of organic semiconductors play a significant role in the performance and lifetime of organic electronic devices, especially for scaled-up large area applications. Here we employ silver nanoparticles (Ag NPs) to modify the thermal conductivity of the small molecule organic semiconductor, dinaphtho[2,3-b:2’,3’-f]thieno[3,2-b]thiophene (DNTT). The differential 3-ω method was used to measure the thermal conductivity of Ag-DNTT hybrid thin films. We find that the thermal conductivity of pure DNTT thin films do not vary with the deposition temperature over a range spanning 24 °C to 80 °C. The thermal conductivity of the Ag-DNTT hybrid thin film initially decreases and then increases when the Ag volume fraction increases from 0% to 32%. By applying the effective medium approximation to fit the experimental results of thermal conductivity, the extracted thermal boundary resistance of the Ag-DNTT interface is 1.14 ± 0.98 × 10(−7) m(2)-K/W. Finite element simulations of thermal conductivity for realistic film morphologies show good agreement with experimental results and effective medium approximations. Nature Publishing Group 2015-11-04 /pmc/articles/PMC4632039/ /pubmed/26531766 http://dx.doi.org/10.1038/srep16095 Text en Copyright © 2015, Macmillan Publishers Limited http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Wang, Xinyu
Parrish, Kevin D.
Malen, Jonathan A.
Chan, Paddy K. L.
Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles
title Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles
title_full Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles
title_fullStr Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles
title_full_unstemmed Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles
title_short Modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles
title_sort modifying the thermal conductivity of small molecule organic semiconductor thin films with metal nanoparticles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632039/
https://www.ncbi.nlm.nih.gov/pubmed/26531766
http://dx.doi.org/10.1038/srep16095
work_keys_str_mv AT wangxinyu modifyingthethermalconductivityofsmallmoleculeorganicsemiconductorthinfilmswithmetalnanoparticles
AT parrishkevind modifyingthethermalconductivityofsmallmoleculeorganicsemiconductorthinfilmswithmetalnanoparticles
AT malenjonathana modifyingthethermalconductivityofsmallmoleculeorganicsemiconductorthinfilmswithmetalnanoparticles
AT chanpaddykl modifyingthethermalconductivityofsmallmoleculeorganicsemiconductorthinfilmswithmetalnanoparticles