Cargando…

The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle

OBJECTIVE: Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhy...

Descripción completa

Detalles Bibliográficos
Autores principales: Dyar, Kenneth A., Ciciliot, Stefano, Tagliazucchi, Guidantonio Malagoli, Pallafacchina, Giorgia, Tothova, Jana, Argentini, Carla, Agatea, Lisa, Abraham, Reimar, Ahdesmäki, Miika, Forcato, Mattia, Bicciato, Silvio, Schiaffino, Stefano, Blaauw, Bert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632177/
https://www.ncbi.nlm.nih.gov/pubmed/26629406
http://dx.doi.org/10.1016/j.molmet.2015.09.004
Descripción
Sumario:OBJECTIVE: Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhythms are coupled together, nor whether activity rhythms can drive circadian gene expression in skeletal muscle. METHODS: We compared the circadian transcriptomes of two mouse hindlimb muscles with vastly different circadian activity patterns, the continuously active slow soleus and the sporadically active fast tibialis anterior, in the presence or absence of a functional skeletal muscle clock (skeletal muscle-specific Bmal1 KO). In addition, we compared the effect of denervation on muscle circadian gene expression. RESULTS: We found that different skeletal muscles exhibit major differences in their circadian transcriptomes, yet core clock gene oscillations were essentially identical in fast and slow muscles. Furthermore, denervation caused relatively minor changes in circadian expression of most core clock genes, yet major differences in expression level, phase and amplitude of many muscle circadian genes. CONCLUSIONS: We report that activity controls the oscillation of around 15% of skeletal muscle circadian genes independently of the core muscle clock, and we have identified the Ca(2+)-dependent calcineurin-NFAT pathway as an important mediator of activity-dependent circadian gene expression, showing that circadian locomotor activity rhythms drive circadian rhythms of NFAT nuclear translocation and target gene expression.