Cargando…

The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle

OBJECTIVE: Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhy...

Descripción completa

Detalles Bibliográficos
Autores principales: Dyar, Kenneth A., Ciciliot, Stefano, Tagliazucchi, Guidantonio Malagoli, Pallafacchina, Giorgia, Tothova, Jana, Argentini, Carla, Agatea, Lisa, Abraham, Reimar, Ahdesmäki, Miika, Forcato, Mattia, Bicciato, Silvio, Schiaffino, Stefano, Blaauw, Bert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632177/
https://www.ncbi.nlm.nih.gov/pubmed/26629406
http://dx.doi.org/10.1016/j.molmet.2015.09.004
_version_ 1782398974413504512
author Dyar, Kenneth A.
Ciciliot, Stefano
Tagliazucchi, Guidantonio Malagoli
Pallafacchina, Giorgia
Tothova, Jana
Argentini, Carla
Agatea, Lisa
Abraham, Reimar
Ahdesmäki, Miika
Forcato, Mattia
Bicciato, Silvio
Schiaffino, Stefano
Blaauw, Bert
author_facet Dyar, Kenneth A.
Ciciliot, Stefano
Tagliazucchi, Guidantonio Malagoli
Pallafacchina, Giorgia
Tothova, Jana
Argentini, Carla
Agatea, Lisa
Abraham, Reimar
Ahdesmäki, Miika
Forcato, Mattia
Bicciato, Silvio
Schiaffino, Stefano
Blaauw, Bert
author_sort Dyar, Kenneth A.
collection PubMed
description OBJECTIVE: Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhythms are coupled together, nor whether activity rhythms can drive circadian gene expression in skeletal muscle. METHODS: We compared the circadian transcriptomes of two mouse hindlimb muscles with vastly different circadian activity patterns, the continuously active slow soleus and the sporadically active fast tibialis anterior, in the presence or absence of a functional skeletal muscle clock (skeletal muscle-specific Bmal1 KO). In addition, we compared the effect of denervation on muscle circadian gene expression. RESULTS: We found that different skeletal muscles exhibit major differences in their circadian transcriptomes, yet core clock gene oscillations were essentially identical in fast and slow muscles. Furthermore, denervation caused relatively minor changes in circadian expression of most core clock genes, yet major differences in expression level, phase and amplitude of many muscle circadian genes. CONCLUSIONS: We report that activity controls the oscillation of around 15% of skeletal muscle circadian genes independently of the core muscle clock, and we have identified the Ca(2+)-dependent calcineurin-NFAT pathway as an important mediator of activity-dependent circadian gene expression, showing that circadian locomotor activity rhythms drive circadian rhythms of NFAT nuclear translocation and target gene expression.
format Online
Article
Text
id pubmed-4632177
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-46321772015-12-01 The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle Dyar, Kenneth A. Ciciliot, Stefano Tagliazucchi, Guidantonio Malagoli Pallafacchina, Giorgia Tothova, Jana Argentini, Carla Agatea, Lisa Abraham, Reimar Ahdesmäki, Miika Forcato, Mattia Bicciato, Silvio Schiaffino, Stefano Blaauw, Bert Mol Metab Original Article OBJECTIVE: Physical activity and circadian rhythms are well-established determinants of human health and disease, but the relationship between muscle activity and the circadian regulation of muscle genes is a relatively new area of research. It is unknown whether muscle activity and muscle clock rhythms are coupled together, nor whether activity rhythms can drive circadian gene expression in skeletal muscle. METHODS: We compared the circadian transcriptomes of two mouse hindlimb muscles with vastly different circadian activity patterns, the continuously active slow soleus and the sporadically active fast tibialis anterior, in the presence or absence of a functional skeletal muscle clock (skeletal muscle-specific Bmal1 KO). In addition, we compared the effect of denervation on muscle circadian gene expression. RESULTS: We found that different skeletal muscles exhibit major differences in their circadian transcriptomes, yet core clock gene oscillations were essentially identical in fast and slow muscles. Furthermore, denervation caused relatively minor changes in circadian expression of most core clock genes, yet major differences in expression level, phase and amplitude of many muscle circadian genes. CONCLUSIONS: We report that activity controls the oscillation of around 15% of skeletal muscle circadian genes independently of the core muscle clock, and we have identified the Ca(2+)-dependent calcineurin-NFAT pathway as an important mediator of activity-dependent circadian gene expression, showing that circadian locomotor activity rhythms drive circadian rhythms of NFAT nuclear translocation and target gene expression. Elsevier 2015-09-25 /pmc/articles/PMC4632177/ /pubmed/26629406 http://dx.doi.org/10.1016/j.molmet.2015.09.004 Text en © 2015 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Dyar, Kenneth A.
Ciciliot, Stefano
Tagliazucchi, Guidantonio Malagoli
Pallafacchina, Giorgia
Tothova, Jana
Argentini, Carla
Agatea, Lisa
Abraham, Reimar
Ahdesmäki, Miika
Forcato, Mattia
Bicciato, Silvio
Schiaffino, Stefano
Blaauw, Bert
The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle
title The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle
title_full The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle
title_fullStr The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle
title_full_unstemmed The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle
title_short The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle
title_sort calcineurin-nfat pathway controls activity-dependent circadian gene expression in slow skeletal muscle
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632177/
https://www.ncbi.nlm.nih.gov/pubmed/26629406
http://dx.doi.org/10.1016/j.molmet.2015.09.004
work_keys_str_mv AT dyarkennetha thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT ciciliotstefano thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT tagliazucchiguidantoniomalagoli thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT pallafacchinagiorgia thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT tothovajana thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT argentinicarla thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT agatealisa thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT abrahamreimar thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT ahdesmakimiika thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT forcatomattia thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT bicciatosilvio thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT schiaffinostefano thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT blaauwbert thecalcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT dyarkennetha calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT ciciliotstefano calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT tagliazucchiguidantoniomalagoli calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT pallafacchinagiorgia calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT tothovajana calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT argentinicarla calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT agatealisa calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT abrahamreimar calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT ahdesmakimiika calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT forcatomattia calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT bicciatosilvio calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT schiaffinostefano calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle
AT blaauwbert calcineurinnfatpathwaycontrolsactivitydependentcircadiangeneexpressioninslowskeletalmuscle