Cargando…
Ensemble Supervised Classification Method Using the Regions of Interest and Grey Level Co-Occurrence Matrices Features for Mammograms Data
BACKGROUND: Breast cancer is one of the most encountered cancers in women. Detection and classification of the cancer into malignant or benign is one of the challenging fields of the pathology. OBJECTIVES: Our aim was to classify the mammogram data into normal and abnormal by ensemble classification...
Autores principales: | Yousefi Banaem, Hossein, Mehri Dehnavi, Alireza, Shahnazi, Makhtum |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Kowsar
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632564/ https://www.ncbi.nlm.nih.gov/pubmed/26557265 http://dx.doi.org/10.5812/iranjradiol.11656 |
Ejemplares similares
-
Identification of masses in digital mammogram using gray level co-occurrence matrices
por: Mohd. Khuzi, A, et al.
Publicado: (2009) -
Identifying regions of interest in mammogram images
por: Jiang, Shu, et al.
Publicado: (2023) -
Detection and classification of Breast Cancer in Wavelet Sub-bands of Fractal Segmented Cancerous Zones
por: Shirazinodeh, Alireza, et al.
Publicado: (2015) -
A Semi-Supervised Method for Tumor Segmentation in Mammogram Images
por: Azary, Hanie, et al.
Publicado: (2020) -
Deep fusion of gray level co-occurrence matrices for lung nodule classification
por: Saihood, Ahmed, et al.
Publicado: (2022)