Cargando…
Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers
The posterior sucker of a leech represents a fascinating natural system that allows the leech to adhere to different terrains and substrates. However, the mechanism of adhesion and desorption has not yet to be elucidated. In order to better understand how the adhesion is performed, we analyzed the s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633047/ https://www.ncbi.nlm.nih.gov/pubmed/26536352 http://dx.doi.org/10.1371/journal.pone.0140776 |
_version_ | 1782399138735849472 |
---|---|
author | Feng, Huashan Chai, Ningli Dong, Wenhao |
author_facet | Feng, Huashan Chai, Ningli Dong, Wenhao |
author_sort | Feng, Huashan |
collection | PubMed |
description | The posterior sucker of a leech represents a fascinating natural system that allows the leech to adhere to different terrains and substrates. However, the mechanism of adhesion and desorption has not yet to be elucidated. In order to better understand how the adhesion is performed, we analyzed the surface structure, adsorption movements, the muscles’ distribution, physical characteristics, and the adsorption force of the leech posterior suckers by experimental investigation. Three conclusions can be drawn based on the obtained experimental results. First, the adhesion by the posterior sucker is wet adhesion, because the surface of the posterior sucker is smooth and the sealing can only be achieved on wet surfaces. Second, the deformation texture, consisting of soft collagen tissues and highly ductile epidermal tissues, plays a key role in adhering to rough surfaces. Finally, the adhesion and desorption is achieved by the synergetic operation of six muscle fibers working in different directions. Concrete saying, directional deformation of the collagen/epithermal interface driven by spatially-distributed muscle fibers facilitates the excretion of fluids in the sucker venter, thus allowing liquid sealing. Furthermore, we found that the adhesion strength is directly related to the size of the contact surface which is generated and affected by the sucker deformation. Such an underlying physical mechanism offers potential cues for developing innovative bio-inspired artificial adhesion systems. |
format | Online Article Text |
id | pubmed-4633047 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46330472015-11-13 Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers Feng, Huashan Chai, Ningli Dong, Wenhao PLoS One Research Article The posterior sucker of a leech represents a fascinating natural system that allows the leech to adhere to different terrains and substrates. However, the mechanism of adhesion and desorption has not yet to be elucidated. In order to better understand how the adhesion is performed, we analyzed the surface structure, adsorption movements, the muscles’ distribution, physical characteristics, and the adsorption force of the leech posterior suckers by experimental investigation. Three conclusions can be drawn based on the obtained experimental results. First, the adhesion by the posterior sucker is wet adhesion, because the surface of the posterior sucker is smooth and the sealing can only be achieved on wet surfaces. Second, the deformation texture, consisting of soft collagen tissues and highly ductile epidermal tissues, plays a key role in adhering to rough surfaces. Finally, the adhesion and desorption is achieved by the synergetic operation of six muscle fibers working in different directions. Concrete saying, directional deformation of the collagen/epithermal interface driven by spatially-distributed muscle fibers facilitates the excretion of fluids in the sucker venter, thus allowing liquid sealing. Furthermore, we found that the adhesion strength is directly related to the size of the contact surface which is generated and affected by the sucker deformation. Such an underlying physical mechanism offers potential cues for developing innovative bio-inspired artificial adhesion systems. Public Library of Science 2015-11-04 /pmc/articles/PMC4633047/ /pubmed/26536352 http://dx.doi.org/10.1371/journal.pone.0140776 Text en © 2015 Feng et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Feng, Huashan Chai, Ningli Dong, Wenhao Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers |
title | Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers |
title_full | Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers |
title_fullStr | Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers |
title_full_unstemmed | Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers |
title_short | Experimental Investigation on the Morphology and Adhesion Mechanism of Leech Posterior Suckers |
title_sort | experimental investigation on the morphology and adhesion mechanism of leech posterior suckers |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633047/ https://www.ncbi.nlm.nih.gov/pubmed/26536352 http://dx.doi.org/10.1371/journal.pone.0140776 |
work_keys_str_mv | AT fenghuashan experimentalinvestigationonthemorphologyandadhesionmechanismofleechposteriorsuckers AT chainingli experimentalinvestigationonthemorphologyandadhesionmechanismofleechposteriorsuckers AT dongwenhao experimentalinvestigationonthemorphologyandadhesionmechanismofleechposteriorsuckers |