Cargando…

Tetrazine-Containing Amino Acid for Peptide Modification and Live Cell Labeling

A novel amino acid derivative 3-(4-(1, 2, 4, 5-tetrazine-3-yl) phenyl)-2-aminopropanoic acid was synthesized in this study. The compound possessed better water-solubility and was synthesized more easily compared with the well-known and commercially available 3-(p-benzylamino)-1, 2, 4, 5-tetrazine. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Ni, Zhongqiu, Zhou, Lanxia, Li, Xu, Zhang, Jing, Dong, Shouliang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633098/
https://www.ncbi.nlm.nih.gov/pubmed/26536589
http://dx.doi.org/10.1371/journal.pone.0141918
Descripción
Sumario:A novel amino acid derivative 3-(4-(1, 2, 4, 5-tetrazine-3-yl) phenyl)-2-aminopropanoic acid was synthesized in this study. The compound possessed better water-solubility and was synthesized more easily compared with the well-known and commercially available 3-(p-benzylamino)-1, 2, 4, 5-tetrazine. Tetrazine-containing amino acid showed excellent stability in biological media and might be used for cancer cell labeling. Moreover, the compound remained relatively stable in 50% TFA/DCM with little decomposition after prolonged exposure at room temperature. The compound could be utilized as phenylalanine or tyrosine analogue in peptide modification, and the tetrazine-containing peptide demonstrated more significant biological activity than that of the parent peptide. The combination of tetrazine group and amino acid offered broad development prospects of the bioorthogonal labeling and peptide synthesis.