Cargando…
Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection
Cucumber gray mold caused by Botrytis cinerea is considered one of the most serious cucumber diseases. With the advent of Hi-seq technology, it is possible to study the plant–pathogen interaction at the transcriptome level. To the best of our knowledge, this is the first application of RNA-seq to id...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633151/ https://www.ncbi.nlm.nih.gov/pubmed/26536465 http://dx.doi.org/10.1371/journal.pone.0142221 |
_version_ | 1782399160347000832 |
---|---|
author | Kong, Weiwen Chen, Nan Liu, Tingting Zhu, Jing Wang, Jingqi He, Xiaoqing Jin, Yi |
author_facet | Kong, Weiwen Chen, Nan Liu, Tingting Zhu, Jing Wang, Jingqi He, Xiaoqing Jin, Yi |
author_sort | Kong, Weiwen |
collection | PubMed |
description | Cucumber gray mold caused by Botrytis cinerea is considered one of the most serious cucumber diseases. With the advent of Hi-seq technology, it is possible to study the plant–pathogen interaction at the transcriptome level. To the best of our knowledge, this is the first application of RNA-seq to identify cucumber and B. cinerea differentially expressed genes (DEGs) before and after the plant–pathogen interaction. In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. This is the first systematic transcriptome analysis of components related to the B. cinerea–cucumber interaction. Functional genes and putative pathways identified herein will increase our understanding of the mechanism of the pathogen–host interaction. |
format | Online Article Text |
id | pubmed-4633151 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46331512015-11-13 Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection Kong, Weiwen Chen, Nan Liu, Tingting Zhu, Jing Wang, Jingqi He, Xiaoqing Jin, Yi PLoS One Research Article Cucumber gray mold caused by Botrytis cinerea is considered one of the most serious cucumber diseases. With the advent of Hi-seq technology, it is possible to study the plant–pathogen interaction at the transcriptome level. To the best of our knowledge, this is the first application of RNA-seq to identify cucumber and B. cinerea differentially expressed genes (DEGs) before and after the plant–pathogen interaction. In total, 248,908,688 raw reads were generated; after removing low-quality reads and those containing adapter and poly-N, 238,341,648 clean reads remained to map the reference genome. There were 3,512 cucumber DEGs and 1,735 B. cinerea DEGs. GO enrichment and KEGG enrichment analysis were performed on these DEGs to study the interaction between cucumber and B. cinerea. To verify the reliability and accuracy of our transcriptome data, 5 cucumber DEGs and 5 B. cinerea DEGs were chosen for RT-PCR verification. This is the first systematic transcriptome analysis of components related to the B. cinerea–cucumber interaction. Functional genes and putative pathways identified herein will increase our understanding of the mechanism of the pathogen–host interaction. Public Library of Science 2015-11-04 /pmc/articles/PMC4633151/ /pubmed/26536465 http://dx.doi.org/10.1371/journal.pone.0142221 Text en © 2015 Kong et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Kong, Weiwen Chen, Nan Liu, Tingting Zhu, Jing Wang, Jingqi He, Xiaoqing Jin, Yi Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection |
title | Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection |
title_full | Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection |
title_fullStr | Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection |
title_full_unstemmed | Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection |
title_short | Large-Scale Transcriptome Analysis of Cucumber and Botrytis cinerea during Infection |
title_sort | large-scale transcriptome analysis of cucumber and botrytis cinerea during infection |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633151/ https://www.ncbi.nlm.nih.gov/pubmed/26536465 http://dx.doi.org/10.1371/journal.pone.0142221 |
work_keys_str_mv | AT kongweiwen largescaletranscriptomeanalysisofcucumberandbotrytiscinereaduringinfection AT chennan largescaletranscriptomeanalysisofcucumberandbotrytiscinereaduringinfection AT liutingting largescaletranscriptomeanalysisofcucumberandbotrytiscinereaduringinfection AT zhujing largescaletranscriptomeanalysisofcucumberandbotrytiscinereaduringinfection AT wangjingqi largescaletranscriptomeanalysisofcucumberandbotrytiscinereaduringinfection AT hexiaoqing largescaletranscriptomeanalysisofcucumberandbotrytiscinereaduringinfection AT jinyi largescaletranscriptomeanalysisofcucumberandbotrytiscinereaduringinfection |