Cargando…
Prostate Cancer Heterogeneous High-Metastatic Multi-Organ-Colonizing Chemo-Resistant Variants Selected by Serial Metastatic Passage in Nude Mice Are Highly Enriched for Multinucleate Giant Cells
In order to further understand the role of tumor heterogeneity in metastasis and chemo-resistance, high metastatic PC-3 human prostate cancer variants were selected by injecting parental PC-3 cells, expressing green fluorescent protein (GFP) in the footpad of nude mice, which then metastasize to ing...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633180/ https://www.ncbi.nlm.nih.gov/pubmed/26536025 http://dx.doi.org/10.1371/journal.pone.0140721 |
_version_ | 1782399167136530432 |
---|---|
author | Zhang, Lei Wu, Chengyu Hoffman, Robert M. |
author_facet | Zhang, Lei Wu, Chengyu Hoffman, Robert M. |
author_sort | Zhang, Lei |
collection | PubMed |
description | In order to further understand the role of tumor heterogeneity in metastasis and chemo-resistance, high metastatic PC-3 human prostate cancer variants were selected by injecting parental PC-3 cells, expressing green fluorescent protein (GFP) in the footpad of nude mice, which then metastasize to inguinal lymph nodes. The PC-3-GFP cells which metastasized to the inguinal lymph nodes were collected and were re-injected to the footpad. After 6 such cycles, the PC-3-GFP cells collected from inguinal lymph nodes (PC-3-GFP-LN) were again injected to the footpad. PC-3-GFP-LN showed 100% metastasis to major lymph nodes (popliteal, inguinal, axillary, and cervical), and 100% metastasis to bone and lung. The percent of giant cell variants was enriched in PC-3-GFP-LN-6 compared to parental cells and increased with each cycle of selection, which in turn had increased metastasis. PC-3-GFP-LN-6 cells were resistant to 5-fluorouracil, doxorubicin and cisplatinum, compared to parental PC-3. However, PC-3-GFP-LN-6 was sensitive to the traditional Chinese medicine (TCM) herbal mixture LQ, similar to the parental cells. These results suggest that PC-3 tumors are heterogenous and that subpopulations of highly metastatic, drug-resistant cells can be step-wise selected using a mouse model of tumor progression. |
format | Online Article Text |
id | pubmed-4633180 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46331802015-11-13 Prostate Cancer Heterogeneous High-Metastatic Multi-Organ-Colonizing Chemo-Resistant Variants Selected by Serial Metastatic Passage in Nude Mice Are Highly Enriched for Multinucleate Giant Cells Zhang, Lei Wu, Chengyu Hoffman, Robert M. PLoS One Research Article In order to further understand the role of tumor heterogeneity in metastasis and chemo-resistance, high metastatic PC-3 human prostate cancer variants were selected by injecting parental PC-3 cells, expressing green fluorescent protein (GFP) in the footpad of nude mice, which then metastasize to inguinal lymph nodes. The PC-3-GFP cells which metastasized to the inguinal lymph nodes were collected and were re-injected to the footpad. After 6 such cycles, the PC-3-GFP cells collected from inguinal lymph nodes (PC-3-GFP-LN) were again injected to the footpad. PC-3-GFP-LN showed 100% metastasis to major lymph nodes (popliteal, inguinal, axillary, and cervical), and 100% metastasis to bone and lung. The percent of giant cell variants was enriched in PC-3-GFP-LN-6 compared to parental cells and increased with each cycle of selection, which in turn had increased metastasis. PC-3-GFP-LN-6 cells were resistant to 5-fluorouracil, doxorubicin and cisplatinum, compared to parental PC-3. However, PC-3-GFP-LN-6 was sensitive to the traditional Chinese medicine (TCM) herbal mixture LQ, similar to the parental cells. These results suggest that PC-3 tumors are heterogenous and that subpopulations of highly metastatic, drug-resistant cells can be step-wise selected using a mouse model of tumor progression. Public Library of Science 2015-11-04 /pmc/articles/PMC4633180/ /pubmed/26536025 http://dx.doi.org/10.1371/journal.pone.0140721 Text en © 2015 Zhang et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Zhang, Lei Wu, Chengyu Hoffman, Robert M. Prostate Cancer Heterogeneous High-Metastatic Multi-Organ-Colonizing Chemo-Resistant Variants Selected by Serial Metastatic Passage in Nude Mice Are Highly Enriched for Multinucleate Giant Cells |
title | Prostate Cancer Heterogeneous High-Metastatic Multi-Organ-Colonizing Chemo-Resistant Variants Selected by Serial Metastatic Passage in Nude Mice Are Highly Enriched for Multinucleate Giant Cells |
title_full | Prostate Cancer Heterogeneous High-Metastatic Multi-Organ-Colonizing Chemo-Resistant Variants Selected by Serial Metastatic Passage in Nude Mice Are Highly Enriched for Multinucleate Giant Cells |
title_fullStr | Prostate Cancer Heterogeneous High-Metastatic Multi-Organ-Colonizing Chemo-Resistant Variants Selected by Serial Metastatic Passage in Nude Mice Are Highly Enriched for Multinucleate Giant Cells |
title_full_unstemmed | Prostate Cancer Heterogeneous High-Metastatic Multi-Organ-Colonizing Chemo-Resistant Variants Selected by Serial Metastatic Passage in Nude Mice Are Highly Enriched for Multinucleate Giant Cells |
title_short | Prostate Cancer Heterogeneous High-Metastatic Multi-Organ-Colonizing Chemo-Resistant Variants Selected by Serial Metastatic Passage in Nude Mice Are Highly Enriched for Multinucleate Giant Cells |
title_sort | prostate cancer heterogeneous high-metastatic multi-organ-colonizing chemo-resistant variants selected by serial metastatic passage in nude mice are highly enriched for multinucleate giant cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633180/ https://www.ncbi.nlm.nih.gov/pubmed/26536025 http://dx.doi.org/10.1371/journal.pone.0140721 |
work_keys_str_mv | AT zhanglei prostatecancerheterogeneoushighmetastaticmultiorgancolonizingchemoresistantvariantsselectedbyserialmetastaticpassageinnudemicearehighlyenrichedformultinucleategiantcells AT wuchengyu prostatecancerheterogeneoushighmetastaticmultiorgancolonizingchemoresistantvariantsselectedbyserialmetastaticpassageinnudemicearehighlyenrichedformultinucleategiantcells AT hoffmanrobertm prostatecancerheterogeneoushighmetastaticmultiorgancolonizingchemoresistantvariantsselectedbyserialmetastaticpassageinnudemicearehighlyenrichedformultinucleategiantcells |