Cargando…
Hyperpolarized nanodiamond with long spin-relaxation times
The use of hyperpolarized agents in magnetic resonance, such as (13)C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation ti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633625/ https://www.ncbi.nlm.nih.gov/pubmed/26450570 http://dx.doi.org/10.1038/ncomms9459 |
Sumario: | The use of hyperpolarized agents in magnetic resonance, such as (13)C-labelled compounds, enables powerful new imaging and detection modalities that stem from a 10,000-fold boost in signal. A major challenge for the future of the hyperpolarization technique is the inherently short spin-relaxation times, typically <60 s for (13)C liquid-state compounds, which limit the time that the signal remains boosted. Here we demonstrate that 1.1% natural abundance (13)C spins in synthetic nanodiamond can be hyperpolarized at cryogenic and room temperature without the use of free radicals, and, owing to their solid-state environment, exhibit relaxation times exceeding 1 h. Combined with the already established applications of nanodiamonds in the life sciences as inexpensive fluorescent markers and non-cytotoxic substrates for gene and drug delivery, these results extend the theranostic capabilities of nanoscale diamonds into the domain of hyperpolarized magnetic resonance. |
---|