Cargando…
NMFBFS: A NMF-Based Feature Selection Method in Identifying Pivotal Clinical Symptoms of Hepatocellular Carcinoma
Background. Hepatocellular carcinoma (HCC) is a highly aggressive malignancy. Traditional Chinese Medicine (TCM), with the characteristics of syndrome differentiation, plays an important role in the comprehensive treatment of HCC. This study aims to develop a nonnegative matrix factorization- (NMF-)...
Autores principales: | Ji, Zhiwei, Meng, Guanmin, Huang, Deshuang, Yue, Xiaoqiang, Wang, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633688/ https://www.ncbi.nlm.nih.gov/pubmed/26579207 http://dx.doi.org/10.1155/2015/846942 |
Ejemplares similares
-
An Efficient Feature Selection Algorithm for Gene Families Using NMF and ReliefF
por: Liu, Kai, et al.
Publicado: (2023) -
Identifying Potential Clinical Syndromes of Hepatocellular Carcinoma
Using PSO-Based Hierarchical Feature Selection Algorithm
por: Ji, Zhiwei, et al.
Publicado: (2014) -
Theorems on Positive Data: On the Uniqueness of NMF
por: Laurberg, Hans, et al.
Publicado: (2008) -
An NMF-L(2,1)-Norm Constraint Method for Characteristic Gene Selection
por: Wang, Dong, et al.
Publicado: (2016) -
Rank-Two NMF Clustering for Glioblastoma Characterization
por: Bougacha, Aymen, et al.
Publicado: (2018)