Cargando…
Open–closed switching of synthetic tubular pores
While encouraging progress has been made on switchable nanopores to mimic biological channels and pores, it remains a great challenge to realize long tubular pores with a dynamic open–closed motion. Here we report μm-long, dynamic tubular pores that undergo rapid switching between open and closed st...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4633957/ https://www.ncbi.nlm.nih.gov/pubmed/26456695 http://dx.doi.org/10.1038/ncomms9650 |
Sumario: | While encouraging progress has been made on switchable nanopores to mimic biological channels and pores, it remains a great challenge to realize long tubular pores with a dynamic open–closed motion. Here we report μm-long, dynamic tubular pores that undergo rapid switching between open and closed states in response to a thermal signal in water. The tubular walls consist of laterally associated primary fibrils stacked from disc-shaped molecules in which the discs readily tilt by means of thermally regulated dehydration of the oligoether chains placed on the wall surfaces. Notably, this pore switching mediates a controlled water-pumping catalytic action for the dehydrative cyclization of adenosine monophosphate to produce metabolically active cyclic adenosine monophosphate. We believe that our work may allow the creation of a variety of dynamic pore structures with complex functions arising from open–closed motion. |
---|