Cargando…

Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures

The hybridization of semiconductor optoelectronic devices and nanomechanical resonators provides a new class of optomechanical systems in which mechanical motion can be coupled to light without any optical cavities. Such cavity-less optomechanical systems interconnect photons, phonons and electrons...

Descripción completa

Detalles Bibliográficos
Autores principales: Okamoto, Hajime, Watanabe, Takayuki, Ohta, Ryuichi, Onomitsu, Koji, Gotoh, Hideki, Sogawa, Tetsuomi, Yamaguchi, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634130/
https://www.ncbi.nlm.nih.gov/pubmed/26477487
http://dx.doi.org/10.1038/ncomms9478
_version_ 1782399296976453632
author Okamoto, Hajime
Watanabe, Takayuki
Ohta, Ryuichi
Onomitsu, Koji
Gotoh, Hideki
Sogawa, Tetsuomi
Yamaguchi, Hiroshi
author_facet Okamoto, Hajime
Watanabe, Takayuki
Ohta, Ryuichi
Onomitsu, Koji
Gotoh, Hideki
Sogawa, Tetsuomi
Yamaguchi, Hiroshi
author_sort Okamoto, Hajime
collection PubMed
description The hybridization of semiconductor optoelectronic devices and nanomechanical resonators provides a new class of optomechanical systems in which mechanical motion can be coupled to light without any optical cavities. Such cavity-less optomechanical systems interconnect photons, phonons and electrons (holes) in a highly integrable platform, opening up the development of functional integrated nanomechanical devices. Here we report on a semiconductor modulation-doped heterostructure–cantilever hybrid system, which realizes efficient cavity-less optomechanical transduction through excitons. The opto-piezoelectric backaction from the bound electron–hole pairs enables us to probe excitonic transition simply with a sub-nanowatt power of light, realizing high-sensitivity optomechanical spectroscopy. Detuning the photon energy from the exciton resonance results in self-feedback cooling and amplification of the thermomechanical motion. This cavity-less on-chip coupling enables highly tunable and addressable control of nanomechanical resonators, allowing high-speed programmable manipulation of nanomechanical devices and sensor arrays.
format Online
Article
Text
id pubmed-4634130
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-46341302015-11-25 Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures Okamoto, Hajime Watanabe, Takayuki Ohta, Ryuichi Onomitsu, Koji Gotoh, Hideki Sogawa, Tetsuomi Yamaguchi, Hiroshi Nat Commun Article The hybridization of semiconductor optoelectronic devices and nanomechanical resonators provides a new class of optomechanical systems in which mechanical motion can be coupled to light without any optical cavities. Such cavity-less optomechanical systems interconnect photons, phonons and electrons (holes) in a highly integrable platform, opening up the development of functional integrated nanomechanical devices. Here we report on a semiconductor modulation-doped heterostructure–cantilever hybrid system, which realizes efficient cavity-less optomechanical transduction through excitons. The opto-piezoelectric backaction from the bound electron–hole pairs enables us to probe excitonic transition simply with a sub-nanowatt power of light, realizing high-sensitivity optomechanical spectroscopy. Detuning the photon energy from the exciton resonance results in self-feedback cooling and amplification of the thermomechanical motion. This cavity-less on-chip coupling enables highly tunable and addressable control of nanomechanical resonators, allowing high-speed programmable manipulation of nanomechanical devices and sensor arrays. Nature Pub. Group 2015-10-19 /pmc/articles/PMC4634130/ /pubmed/26477487 http://dx.doi.org/10.1038/ncomms9478 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Okamoto, Hajime
Watanabe, Takayuki
Ohta, Ryuichi
Onomitsu, Koji
Gotoh, Hideki
Sogawa, Tetsuomi
Yamaguchi, Hiroshi
Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures
title Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures
title_full Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures
title_fullStr Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures
title_full_unstemmed Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures
title_short Cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures
title_sort cavity-less on-chip optomechanics using excitonic transitions in semiconductor heterostructures
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634130/
https://www.ncbi.nlm.nih.gov/pubmed/26477487
http://dx.doi.org/10.1038/ncomms9478
work_keys_str_mv AT okamotohajime cavitylessonchipoptomechanicsusingexcitonictransitionsinsemiconductorheterostructures
AT watanabetakayuki cavitylessonchipoptomechanicsusingexcitonictransitionsinsemiconductorheterostructures
AT ohtaryuichi cavitylessonchipoptomechanicsusingexcitonictransitionsinsemiconductorheterostructures
AT onomitsukoji cavitylessonchipoptomechanicsusingexcitonictransitionsinsemiconductorheterostructures
AT gotohhideki cavitylessonchipoptomechanicsusingexcitonictransitionsinsemiconductorheterostructures
AT sogawatetsuomi cavitylessonchipoptomechanicsusingexcitonictransitionsinsemiconductorheterostructures
AT yamaguchihiroshi cavitylessonchipoptomechanicsusingexcitonictransitionsinsemiconductorheterostructures