Cargando…

Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system

Photo-control of material properties on femto- (10(−15)) and pico- (10(−12)) second timescales at room temperature has been a long-sought goal of materials science. Here we demonstrate a unique ultrafast conversion between the metallic and insulating state and the emergence of a hidden insulating st...

Descripción completa

Detalles Bibliográficos
Autores principales: Fukaya, R., Okimoto, Y., Kunitomo, M., Onda, K., Ishikawa, T., Koshihara, S., Hashimoto, H., Ishihara, S., Isayama, A., Yui, H., Sasagawa, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634131/
https://www.ncbi.nlm.nih.gov/pubmed/26481604
http://dx.doi.org/10.1038/ncomms9519
_version_ 1782399297209237504
author Fukaya, R.
Okimoto, Y.
Kunitomo, M.
Onda, K.
Ishikawa, T.
Koshihara, S.
Hashimoto, H.
Ishihara, S.
Isayama, A.
Yui, H.
Sasagawa, T.
author_facet Fukaya, R.
Okimoto, Y.
Kunitomo, M.
Onda, K.
Ishikawa, T.
Koshihara, S.
Hashimoto, H.
Ishihara, S.
Isayama, A.
Yui, H.
Sasagawa, T.
author_sort Fukaya, R.
collection PubMed
description Photo-control of material properties on femto- (10(−15)) and pico- (10(−12)) second timescales at room temperature has been a long-sought goal of materials science. Here we demonstrate a unique ultrafast conversion between the metallic and insulating state and the emergence of a hidden insulating state by tuning the carrier coherence in a wide temperature range in the two-leg ladder superconductor Sr(14-x)Ca(x)Cu(24)O(41) through femtosecond time-resolved reflection spectroscopy. We also propose a theoretical scenario that can explain the experimental results. The calculations indicate that the holes injected by the ultrashort light reduce the coherence among the inherent hole pairs and result in suppression of conductivity, which is opposite to the conventional photocarrier-doping mechanism. By using trains of ultrashort laser pulses, we successively tune the carrier coherence to within 1 picosecond. Control of hole-pair coherence is shown to be a realistic strategy for tuning the electronic state on ultrafast timescales at room temperature.
format Online
Article
Text
id pubmed-4634131
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-46341312015-11-25 Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system Fukaya, R. Okimoto, Y. Kunitomo, M. Onda, K. Ishikawa, T. Koshihara, S. Hashimoto, H. Ishihara, S. Isayama, A. Yui, H. Sasagawa, T. Nat Commun Article Photo-control of material properties on femto- (10(−15)) and pico- (10(−12)) second timescales at room temperature has been a long-sought goal of materials science. Here we demonstrate a unique ultrafast conversion between the metallic and insulating state and the emergence of a hidden insulating state by tuning the carrier coherence in a wide temperature range in the two-leg ladder superconductor Sr(14-x)Ca(x)Cu(24)O(41) through femtosecond time-resolved reflection spectroscopy. We also propose a theoretical scenario that can explain the experimental results. The calculations indicate that the holes injected by the ultrashort light reduce the coherence among the inherent hole pairs and result in suppression of conductivity, which is opposite to the conventional photocarrier-doping mechanism. By using trains of ultrashort laser pulses, we successively tune the carrier coherence to within 1 picosecond. Control of hole-pair coherence is shown to be a realistic strategy for tuning the electronic state on ultrafast timescales at room temperature. Nature Pub. Group 2015-10-20 /pmc/articles/PMC4634131/ /pubmed/26481604 http://dx.doi.org/10.1038/ncomms9519 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Fukaya, R.
Okimoto, Y.
Kunitomo, M.
Onda, K.
Ishikawa, T.
Koshihara, S.
Hashimoto, H.
Ishihara, S.
Isayama, A.
Yui, H.
Sasagawa, T.
Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system
title Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system
title_full Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system
title_fullStr Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system
title_full_unstemmed Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system
title_short Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system
title_sort ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634131/
https://www.ncbi.nlm.nih.gov/pubmed/26481604
http://dx.doi.org/10.1038/ncomms9519
work_keys_str_mv AT fukayar ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem
AT okimotoy ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem
AT kunitomom ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem
AT ondak ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem
AT ishikawat ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem
AT koshiharas ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem
AT hashimotoh ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem
AT ishiharas ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem
AT isayamaa ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem
AT yuih ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem
AT sasagawat ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem