Cargando…
Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system
Photo-control of material properties on femto- (10(−15)) and pico- (10(−12)) second timescales at room temperature has been a long-sought goal of materials science. Here we demonstrate a unique ultrafast conversion between the metallic and insulating state and the emergence of a hidden insulating st...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634131/ https://www.ncbi.nlm.nih.gov/pubmed/26481604 http://dx.doi.org/10.1038/ncomms9519 |
_version_ | 1782399297209237504 |
---|---|
author | Fukaya, R. Okimoto, Y. Kunitomo, M. Onda, K. Ishikawa, T. Koshihara, S. Hashimoto, H. Ishihara, S. Isayama, A. Yui, H. Sasagawa, T. |
author_facet | Fukaya, R. Okimoto, Y. Kunitomo, M. Onda, K. Ishikawa, T. Koshihara, S. Hashimoto, H. Ishihara, S. Isayama, A. Yui, H. Sasagawa, T. |
author_sort | Fukaya, R. |
collection | PubMed |
description | Photo-control of material properties on femto- (10(−15)) and pico- (10(−12)) second timescales at room temperature has been a long-sought goal of materials science. Here we demonstrate a unique ultrafast conversion between the metallic and insulating state and the emergence of a hidden insulating state by tuning the carrier coherence in a wide temperature range in the two-leg ladder superconductor Sr(14-x)Ca(x)Cu(24)O(41) through femtosecond time-resolved reflection spectroscopy. We also propose a theoretical scenario that can explain the experimental results. The calculations indicate that the holes injected by the ultrashort light reduce the coherence among the inherent hole pairs and result in suppression of conductivity, which is opposite to the conventional photocarrier-doping mechanism. By using trains of ultrashort laser pulses, we successively tune the carrier coherence to within 1 picosecond. Control of hole-pair coherence is shown to be a realistic strategy for tuning the electronic state on ultrafast timescales at room temperature. |
format | Online Article Text |
id | pubmed-4634131 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-46341312015-11-25 Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system Fukaya, R. Okimoto, Y. Kunitomo, M. Onda, K. Ishikawa, T. Koshihara, S. Hashimoto, H. Ishihara, S. Isayama, A. Yui, H. Sasagawa, T. Nat Commun Article Photo-control of material properties on femto- (10(−15)) and pico- (10(−12)) second timescales at room temperature has been a long-sought goal of materials science. Here we demonstrate a unique ultrafast conversion between the metallic and insulating state and the emergence of a hidden insulating state by tuning the carrier coherence in a wide temperature range in the two-leg ladder superconductor Sr(14-x)Ca(x)Cu(24)O(41) through femtosecond time-resolved reflection spectroscopy. We also propose a theoretical scenario that can explain the experimental results. The calculations indicate that the holes injected by the ultrashort light reduce the coherence among the inherent hole pairs and result in suppression of conductivity, which is opposite to the conventional photocarrier-doping mechanism. By using trains of ultrashort laser pulses, we successively tune the carrier coherence to within 1 picosecond. Control of hole-pair coherence is shown to be a realistic strategy for tuning the electronic state on ultrafast timescales at room temperature. Nature Pub. Group 2015-10-20 /pmc/articles/PMC4634131/ /pubmed/26481604 http://dx.doi.org/10.1038/ncomms9519 Text en Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by/4.0/ This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ |
spellingShingle | Article Fukaya, R. Okimoto, Y. Kunitomo, M. Onda, K. Ishikawa, T. Koshihara, S. Hashimoto, H. Ishihara, S. Isayama, A. Yui, H. Sasagawa, T. Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system |
title | Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system |
title_full | Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system |
title_fullStr | Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system |
title_full_unstemmed | Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system |
title_short | Ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system |
title_sort | ultrafast electronic state conversion at room temperature utilizing hidden state in cuprate ladder system |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634131/ https://www.ncbi.nlm.nih.gov/pubmed/26481604 http://dx.doi.org/10.1038/ncomms9519 |
work_keys_str_mv | AT fukayar ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem AT okimotoy ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem AT kunitomom ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem AT ondak ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem AT ishikawat ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem AT koshiharas ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem AT hashimotoh ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem AT ishiharas ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem AT isayamaa ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem AT yuih ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem AT sasagawat ultrafastelectronicstateconversionatroomtemperatureutilizinghiddenstateincuprateladdersystem |