Cargando…

A Low Noise Amplifier for Neural Spike Recording Interfaces

This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-l...

Descripción completa

Detalles Bibliográficos
Autores principales: Ruiz-Amaya, Jesus, Rodriguez-Perez, Alberto, Delgado-Restituto, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634474/
https://www.ncbi.nlm.nih.gov/pubmed/26437411
http://dx.doi.org/10.3390/s151025313
Descripción
Sumario:This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz–7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models.