Cargando…
Auto Regressive Moving Average (ARMA) Modeling Method for Gyro Random Noise Using a Robust Kalman Filter
To solve the problem in which the conventional ARMA modeling methods for gyro random noise require a large number of samples and converge slowly, an ARMA modeling method using a robust Kalman filtering is developed. The ARMA model parameters are employed as state arguments. Unknown time-varying esti...
Autor principal: | Huang, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634477/ https://www.ncbi.nlm.nih.gov/pubmed/26437409 http://dx.doi.org/10.3390/s151025277 |
Ejemplares similares
-
Gyro Drift Correction for An Indirect Kalman Filter Based Sensor Fusion Driver
por: Lee, Chan-Gun, et al.
Publicado: (2016) -
WITHDRAWN: COVID pandemic analysis using Auto-
Regression-Based moving average method
por: Gupta, Sangeeta, et al.
Publicado: (2021) -
A Bias Drift Suppression Method Based on ICELMD and ARMA-KF for MEMS Gyros
por: Feng, Lihui, et al.
Publicado: (2022) -
A Fault-Tolerant Data Fusion Method of MEMS Redundant Gyro System Based on Weighted Distributed Kalman Filtering
por: Du, Binhan, et al.
Publicado: (2019) -
A robust gene regulatory network inference method base on Kalman
filter and linear regression
por: Pirgazi, Jamshid, et al.
Publicado: (2018)