Cargando…
A Biologically-Inspired Framework for Contour Detection Using Superpixel-Based Candidates and Hierarchical Visual Cues
Contour detection has been extensively investigated as a fundamental problem in computer vision. In this study, a biologically-inspired candidate weighting framework is proposed for the challenging task of detecting meaningful contours. In contrast to previous models that detect contours from pixels...
Autores principales: | Sun, Xiao, Shang, Ke, Ming, Delie, Tian, Jinwen, Ma, Jiayi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634520/ https://www.ncbi.nlm.nih.gov/pubmed/26492252 http://dx.doi.org/10.3390/s151026654 |
Ejemplares similares
-
Biologically Inspired Hierarchical Contour Detection with Surround Modulation and Neural Connection
por: Li, Shuai, et al.
Publicado: (2018) -
A Mixture Model for Robust Point Matching under Multi-Layer Motion
por: Ma, Jiayi, et al.
Publicado: (2014) -
Rectangular-Normalized Superpixel Entropy Index for Image Quality Assessment
por: Lu, Tao, et al.
Publicado: (2018) -
Novel superpixel method to visualize fundus blood flow resistivity in healthy adults
por: Okamoto, Kenji, et al.
Publicado: (2023) -
Efficient Color Quantization Using Superpixels
por: Frackiewicz, Mariusz, et al.
Publicado: (2022)