Cargando…

Stem-Loop V of Varkud Satellite RNA Exhibits Characteristics of the Mg(2+) Bound Structure in the Presence of Monovalent Ions

[Image: see text] The Varkud Satellite RNA contains a self-cleaving ribozyme that has been shown to function independently of its surroundings. This 160 nucleotide ribozyme adopts a catalytically active tertiary structure that includes a kissing hairpin complex formed by stem-loop I and stem-loop V...

Descripción completa

Detalles Bibliográficos
Autores principales: Bergonzo, Christina, Hall, Kathleen B., Cheatham, Thomas E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2015
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634716/
https://www.ncbi.nlm.nih.gov/pubmed/26328924
http://dx.doi.org/10.1021/acs.jpcb.5b05190
Descripción
Sumario:[Image: see text] The Varkud Satellite RNA contains a self-cleaving ribozyme that has been shown to function independently of its surroundings. This 160 nucleotide ribozyme adopts a catalytically active tertiary structure that includes a kissing hairpin complex formed by stem-loop I and stem-loop V (SLV). The five-nucleotide 5′-rUGACU loop of the isolated SLV has been shown to adopt a Mg(2+)-dependent U-turn structure by solution NMR. This U-turn hairpin is examined here by molecular dynamics simulations in the presence of monovalent and divalent ions. Simulations confirm on an all-atom level the hypotheses for the role of the Mg(2+) ions in stabilizing the loop, as well as the role of the solvent exposed U(700) base. Additionally, these simulations suggest the Mg(2+)-free stem-loop adopts a wide range of structures, including energetically favorable structures similar to the Mg(2+)-bound loop structure. We propose this structure is a “gatekeeper” or precursor to Mg(2+) binding when those ions are present.