Cargando…
A measure of the impact of CV incompleteness on prediction error estimation with application to PCA and normalization
BACKGROUND: In applications of supervised statistical learning in the biomedical field it is necessary to assess the prediction error of the respective prediction rules. Often, data preparation steps are performed on the dataset—in its entirety—before training/test set based prediction error estimat...
Autores principales: | Hornung, Roman, Bernau, Christoph, Truntzer, Caroline, Wilson, Rory, Stadler, Thomas, Boulesteix, Anne-Laure |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634762/ https://www.ncbi.nlm.nih.gov/pubmed/26537575 http://dx.doi.org/10.1186/s12874-015-0088-9 |
Ejemplares similares
-
Optimal classifier selection and negative bias in error rate estimation: an empirical study on high-dimensional prediction
por: Boulesteix, Anne-Laure, et al.
Publicado: (2009) -
Combining location-and-scale batch effect adjustment with data cleaning by latent factor adjustment
por: Hornung, Roman, et al.
Publicado: (2016) -
Towards evidence-based computational statistics: lessons from clinical research on the role and design of real-data benchmark studies
por: Boulesteix, Anne-Laure, et al.
Publicado: (2017) -
Assessment of predictive performance in incomplete data by combining internal validation and multiple imputation
por: Wahl, Simone, et al.
Publicado: (2016) -
Cross-study validation for the assessment of prediction algorithms
por: Bernau, Christoph, et al.
Publicado: (2014)