Cargando…
Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson’s Disease
BACKGROUND: The intestine is one of the first affected organs in Parkinson’s disease (PD). PD subjects show abnormal staining for Escherichia coli and α-synuclein in the colon. METHODS: We recruited 52 PD patients and 36 healthy cohabitants. We measured serum markers and quantified the numbers of 19...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634857/ https://www.ncbi.nlm.nih.gov/pubmed/26539989 http://dx.doi.org/10.1371/journal.pone.0142164 |
_version_ | 1782399431774044160 |
---|---|
author | Hasegawa, Satoru Goto, Sae Tsuji, Hirokazu Okuno, Tatsuya Asahara, Takashi Nomoto, Koji Shibata, Akihide Fujisawa, Yoshiro Minato, Tomomi Okamoto, Akira Ohno, Kinji Hirayama, Masaaki |
author_facet | Hasegawa, Satoru Goto, Sae Tsuji, Hirokazu Okuno, Tatsuya Asahara, Takashi Nomoto, Koji Shibata, Akihide Fujisawa, Yoshiro Minato, Tomomi Okamoto, Akira Ohno, Kinji Hirayama, Masaaki |
author_sort | Hasegawa, Satoru |
collection | PubMed |
description | BACKGROUND: The intestine is one of the first affected organs in Parkinson’s disease (PD). PD subjects show abnormal staining for Escherichia coli and α-synuclein in the colon. METHODS: We recruited 52 PD patients and 36 healthy cohabitants. We measured serum markers and quantified the numbers of 19 fecal bacterial groups/genera/species by quantitative RT-PCR of 16S or 23S rRNA. Although the six most predominant bacterial groups/genera/species covered on average 71.3% of total intestinal bacteria, our analysis was not comprehensive compared to metagenome analysis or 16S rRNA amplicon sequencing. RESULTS: In PD, the number of Lactobacillus was higher, while the sum of analyzed bacteria, Clostridium coccoides group, and Bacteroides fragilis group were lower than controls. Additionally, the sum of putative hydrogen-producing bacteria was lower in PD. A linear regression model to predict disease durations demonstrated that C. coccoides group and Lactobacillus gasseri subgroup had the largest negative and positive coefficients, respectively. As a linear regression model to predict stool frequencies showed that these bacteria were not associated with constipation, changes in these bacteria were unlikely to represent worsening of constipation in the course of progression of PD. In PD, the serum lipopolysaccharide (LPS)-binding protein levels were lower than controls, while the levels of serum diamine oxidase, a marker for intestinal mucosal integrity, remained unchanged in PD. CONCLUSIONS: The permeability to LPS is likely to be increased without compromising the integrity of intestinal mucosa in PD. The increased intestinal permeability in PD may make the patients susceptible to intestinal dysbiosis. Conversely, intestinal dysbiosis may lead to the increased intestinal permeability. One or both of the two mechanisms may be operational in development and progression of PD. |
format | Online Article Text |
id | pubmed-4634857 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46348572015-11-13 Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson’s Disease Hasegawa, Satoru Goto, Sae Tsuji, Hirokazu Okuno, Tatsuya Asahara, Takashi Nomoto, Koji Shibata, Akihide Fujisawa, Yoshiro Minato, Tomomi Okamoto, Akira Ohno, Kinji Hirayama, Masaaki PLoS One Research Article BACKGROUND: The intestine is one of the first affected organs in Parkinson’s disease (PD). PD subjects show abnormal staining for Escherichia coli and α-synuclein in the colon. METHODS: We recruited 52 PD patients and 36 healthy cohabitants. We measured serum markers and quantified the numbers of 19 fecal bacterial groups/genera/species by quantitative RT-PCR of 16S or 23S rRNA. Although the six most predominant bacterial groups/genera/species covered on average 71.3% of total intestinal bacteria, our analysis was not comprehensive compared to metagenome analysis or 16S rRNA amplicon sequencing. RESULTS: In PD, the number of Lactobacillus was higher, while the sum of analyzed bacteria, Clostridium coccoides group, and Bacteroides fragilis group were lower than controls. Additionally, the sum of putative hydrogen-producing bacteria was lower in PD. A linear regression model to predict disease durations demonstrated that C. coccoides group and Lactobacillus gasseri subgroup had the largest negative and positive coefficients, respectively. As a linear regression model to predict stool frequencies showed that these bacteria were not associated with constipation, changes in these bacteria were unlikely to represent worsening of constipation in the course of progression of PD. In PD, the serum lipopolysaccharide (LPS)-binding protein levels were lower than controls, while the levels of serum diamine oxidase, a marker for intestinal mucosal integrity, remained unchanged in PD. CONCLUSIONS: The permeability to LPS is likely to be increased without compromising the integrity of intestinal mucosa in PD. The increased intestinal permeability in PD may make the patients susceptible to intestinal dysbiosis. Conversely, intestinal dysbiosis may lead to the increased intestinal permeability. One or both of the two mechanisms may be operational in development and progression of PD. Public Library of Science 2015-11-05 /pmc/articles/PMC4634857/ /pubmed/26539989 http://dx.doi.org/10.1371/journal.pone.0142164 Text en © 2015 Hasegawa et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Hasegawa, Satoru Goto, Sae Tsuji, Hirokazu Okuno, Tatsuya Asahara, Takashi Nomoto, Koji Shibata, Akihide Fujisawa, Yoshiro Minato, Tomomi Okamoto, Akira Ohno, Kinji Hirayama, Masaaki Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson’s Disease |
title | Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson’s Disease |
title_full | Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson’s Disease |
title_fullStr | Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson’s Disease |
title_full_unstemmed | Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson’s Disease |
title_short | Intestinal Dysbiosis and Lowered Serum Lipopolysaccharide-Binding Protein in Parkinson’s Disease |
title_sort | intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in parkinson’s disease |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634857/ https://www.ncbi.nlm.nih.gov/pubmed/26539989 http://dx.doi.org/10.1371/journal.pone.0142164 |
work_keys_str_mv | AT hasegawasatoru intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease AT gotosae intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease AT tsujihirokazu intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease AT okunotatsuya intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease AT asaharatakashi intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease AT nomotokoji intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease AT shibataakihide intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease AT fujisawayoshiro intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease AT minatotomomi intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease AT okamotoakira intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease AT ohnokinji intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease AT hirayamamasaaki intestinaldysbiosisandloweredserumlipopolysaccharidebindingproteininparkinsonsdisease |