Cargando…
Predicting drug side effects by multi-label learning and ensemble learning
BACKGROUND: Predicting drug side effects is an important topic in the drug discovery. Although several machine learning methods have been proposed to predict side effects, there is still space for improvements. Firstly, the side effect prediction is a multi-label learning task, and we can adopt the...
Autores principales: | Zhang, Wen, Liu, Feng, Luo, Longqiang, Zhang, Jingxia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634905/ https://www.ncbi.nlm.nih.gov/pubmed/26537615 http://dx.doi.org/10.1186/s12859-015-0774-y |
Ejemplares similares
-
Accurate Prediction of Immunogenic T-Cell Epitopes from Epitope Sequences Using the Genetic Algorithm-Based Ensemble Learning
por: Zhang, Wen, et al.
Publicado: (2015) -
A genetic algorithm-based weighted ensemble method for predicting transposon-derived piRNAs
por: Li, Dingfang, et al.
Publicado: (2016) -
MoRF-FUNCpred: Molecular Recognition Feature Function Prediction Based on Multi-Label Learning and Ensemble Learning
por: Li, Haozheng, et al.
Publicado: (2022) -
DEML: Drug Synergy and Interaction Prediction Using Ensemble-Based Multi-Task Learning
por: Wang, Zhongming, et al.
Publicado: (2023) -
Learning important features from multi-view data to predict drug side effects
por: Liang, Xujun, et al.
Publicado: (2019)