Cargando…
Joint use of over- and under-sampling techniques and cross-validation for the development and assessment of prediction models
BACKGROUND: Prediction models are used in clinical research to develop rules that can be used to accurately predict the outcome of the patients based on some of their characteristics. They represent a valuable tool in the decision making process of clinicians and health policy makers, as they enable...
Autores principales: | Blagus, Rok, Lusa, Lara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634915/ https://www.ncbi.nlm.nih.gov/pubmed/26537827 http://dx.doi.org/10.1186/s12859-015-0784-9 |
Ejemplares similares
-
Boosting for high-dimensional two-class prediction
por: Blagus, Rok, et al.
Publicado: (2015) -
Class prediction for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2010) -
SMOTE for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Improved shrunken centroid classifiers for high-dimensional class-imbalanced data
por: Blagus, Rok, et al.
Publicado: (2013) -
Leave-one-out cross-validation, penalization, and differential bias of some prediction model performance measures—a simulation study
por: Geroldinger, Angelika, et al.
Publicado: (2023)