Cargando…

A re-randomisation design for clinical trials

BACKGROUND: Recruitment to clinical trials is often problematic, with many trials failing to recruit to their target sample size. As a result, patient care may be based on suboptimal evidence from underpowered trials or non-randomised studies. METHODS: For many conditions patients will require treat...

Descripción completa

Detalles Bibliográficos
Autores principales: Kahan, Brennan C, Forbes, Andrew B, Doré, Caroline J, Morris, Tim P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634916/
https://www.ncbi.nlm.nih.gov/pubmed/26541982
http://dx.doi.org/10.1186/s12874-015-0082-2
Descripción
Sumario:BACKGROUND: Recruitment to clinical trials is often problematic, with many trials failing to recruit to their target sample size. As a result, patient care may be based on suboptimal evidence from underpowered trials or non-randomised studies. METHODS: For many conditions patients will require treatment on several occasions, for example, to treat symptoms of an underlying chronic condition (such as migraines, where treatment is required each time a new episode occurs), or until they achieve treatment success (such as fertility, where patients undergo treatment on multiple occasions until they become pregnant). We describe a re-randomisation design for these scenarios, which allows each patient to be independently randomised on multiple occasions. We discuss the circumstances in which this design can be used. RESULTS: The re-randomisation design will give asymptotically unbiased estimates of treatment effect and correct type I error rates under the following conditions: (a) patients are only re-randomised after the follow-up period from their previous randomisation is complete; (b) randomisations for the same patient are performed independently; and (c) the treatment effect is constant across all randomisations. Provided the analysis accounts for correlation between observations from the same patient, this design will typically have higher power than a parallel group trial with an equivalent number of observations. CONCLUSIONS: If used appropriately, the re-randomisation design can increase the recruitment rate for clinical trials while still providing an unbiased estimate of treatment effect and correct type I error rates. In many situations, it can increase the power compared to a parallel group design with an equivalent number of observations. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12874-015-0082-2) contains supplementary material, which is available to authorized users.