Cargando…
Learning to Estimate Dynamical State with Probabilistic Population Codes
Tracking moving objects, including one’s own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be...
Autores principales: | Makin, Joseph G., Dichter, Benjamin K., Sabes, Philip N. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4634970/ https://www.ncbi.nlm.nih.gov/pubmed/26540152 http://dx.doi.org/10.1371/journal.pcbi.1004554 |
Ejemplares similares
-
Learning Multisensory Integration and Coordinate Transformation via Density Estimation
por: Makin, Joseph G., et al.
Publicado: (2013) -
Development of a Probabilistic Technique for On-line Parameter and State Estimation in Non-linear Dynamic Systems
por: Tunc-Aldemir, M, et al.
Publicado: (2002) -
Probabilistic modelling of chromatin code landscape reveals functional diversity of enhancer-like chromatin states
por: Zhou, Jian, et al.
Publicado: (2016) -
Probabilistic population aging
por: Sanderson, Warren C., et al.
Publicado: (2017) -
A probabilistic method for testing and estimating selection differences between populations
por: He, Yungang, et al.
Publicado: (2015)