Cargando…
Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets
Uncovering driver genes is crucial for understanding heterogeneity in cancer. L (1)-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess...
Autores principales: | Park, Heewon, Imoto, Seiya, Miyano, Satoru |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4636151/ https://www.ncbi.nlm.nih.gov/pubmed/26544691 http://dx.doi.org/10.1371/journal.pone.0141869 |
Ejemplares similares
-
Robust Prediction of Anti-Cancer Drug Sensitivity and Sensitivity-Specific Biomarker
por: Park, Heewon, et al.
Publicado: (2014) -
PredictiveNetwork: predictive gene network estimation with application to gastric cancer drug response-predictive network analysis
por: Park, Heewon, et al.
Publicado: (2022) -
Comprehensive information-based differential gene regulatory networks analysis (CIdrgn): Application to gastric cancer and chemotherapy-responsive gene network identification
por: Park, Heewon, et al.
Publicado: (2023) -
Xprediction: Explainable EGFR-TKIs response prediction based on drug sensitivity specific gene networks
por: Park, Heewon, et al.
Publicado: (2022) -
Recursive regularization for inferring gene networks from time-course gene expression profiles
por: Shimamura, Teppei, et al.
Publicado: (2009)