Cargando…

Biological Behaviour and Enhanced Anticorrosive Performance of the Nitrided Superelastic Ti-23Nb-0.7Ta-2Zr-0.5N Alloy

The influence of gas nitriding surface treatment on the superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy was evaluated. A thorough characterization of bare and nitrided Ti-based alloy and pure Ti was performed in terms of surface film composition and morphology, electrochemical behaviour, and short term os...

Descripción completa

Detalles Bibliográficos
Autores principales: Mitran, Valentina, Vasilescu, Cora, Drob, Silviu Iulian, Osiceanu, Petre, Calderon-Moreno, Jose Maria, Tabirca, Mariana-Cristina, Gordin, Doina-Margareta, Gloriant, Thierry, Cimpean, Anisoara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637020/
https://www.ncbi.nlm.nih.gov/pubmed/26583096
http://dx.doi.org/10.1155/2015/261802
Descripción
Sumario:The influence of gas nitriding surface treatment on the superelastic Ti-23Nb-0.7Ta-2Zr-0.5N alloy was evaluated. A thorough characterization of bare and nitrided Ti-based alloy and pure Ti was performed in terms of surface film composition and morphology, electrochemical behaviour, and short term osteoblast response. XPS analysis showed that the nitriding treatment strongly influenced the composition (nitrides and oxynitrides) and surface properties both of the substrate and of the bulk alloy. SEM images revealed that the nitrided surface appears as a similar dotted pattern caused by the formation of N-rich domains coexisting with less nitrided domains, while before treatment only topographical features could be observed. All the electrochemical results confirmed the high chemical stability of the nitride and oxynitride coating and the superiority of the applied treatment. The values of the corrosion parameters ascertained the excellent corrosion resistance of the coated alloy in the real functional conditions from the human body. Cell culture experiments with MG63 osteoblasts demonstrated that the studied biomaterials do not elicit any toxic effects and support cell adhesion and enhanced cell proliferation. Altogether, these data indicate that the nitrided Ti-23Nb-0.7Ta-2Zr-0.5N alloy is the most suitable substrate for application in bone implantology.