Cargando…

PI3K/AKT/mTOR/p70S6K Pathway Is Involved in Aβ25-35-Induced Autophagy

Disruption or deregulation of the autophagy system has been implicated in neurodegenerative disorders such as Alzheimer's disease (AD). Aβ plays an important role in this autophagic system. In many cases, autophagy is regulated by the phosphatidylinositol 3-phosphate kinase/AKT/mammalian target...

Descripción completa

Detalles Bibliográficos
Autores principales: Fan, Shengnuo, Zhang, Bei, Luan, Ping, Gu, Beibei, Wan, Qing, Huang, Xiaoyun, Liao, Wang, Liu, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637023/
https://www.ncbi.nlm.nih.gov/pubmed/26583091
http://dx.doi.org/10.1155/2015/161020
Descripción
Sumario:Disruption or deregulation of the autophagy system has been implicated in neurodegenerative disorders such as Alzheimer's disease (AD). Aβ plays an important role in this autophagic system. In many cases, autophagy is regulated by the phosphatidylinositol 3-phosphate kinase/AKT/mammalian target of rapamycin/p70 ribosomal protein S6 kinase (PI3K/AKT/mTOR/p70S6K) signaling pathway. However, whether this signaling pathway is involved in Aβ-induced autophagy in neuronal cells is not known. Here, we studied whether Aβ25-35 induces autophagy in HT22 cells and C57 mice and investigated whether PI3K is involved in the autophagy induction. We found that Aβ25-35 inhibited HT22 cell viability in a dose- and time-dependent manner. Aβ25-35 induced autophagosome formation, the conversion of microtubule-associated protein light chain 3 (LC3), and the suppression of the mTOR pathway both in vitro and in vivo. Furthermore, Aβ25-35 impaired the learning abilities of C57 mice. Our study suggests that Aβ25-35 induces autophagy and the PI3K/AKT/mTOR/p70S6K pathway is involved in the process, which improves our understanding of the pathogenesis of AD and provides an additional model for AD research.