Cargando…
Self-Trained Supervised Segmentation of Subcortical Brain Structures Using Multispectral Magnetic Resonance Images
The aim of this paper is investigate the feasibility of automatically training supervised methods, such as k-nearest neighbor (kNN) and principal component discriminant analysis (PCDA), and to segment the four subcortical brain structures: caudate, thalamus, pallidum, and putamen. The adoption of su...
Autores principales: | Larobina, Michele, Murino, Loredana, Cervo, Amedeo, Alfano, Bruno |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637150/ https://www.ncbi.nlm.nih.gov/pubmed/26583131 http://dx.doi.org/10.1155/2015/764383 |
Ejemplares similares
-
Ensemble Semi-supervised Frame-work for Brain Magnetic Resonance Imaging Tissue Segmentation
por: Azmi, Reza, et al.
Publicado: (2013) -
Comparing Three Methods of Selecting Training Samples in Supervised Classification of Multispectral Remote Sensing Images
por: Zhang, Hongying, et al.
Publicado: (2023) -
Anatomically curated segmentation of human subcortical structures in high resolution magnetic resonance imaging: An open science approach
por: Rushmore, R. Jarrett, et al.
Publicado: (2022) -
Supervised spatial classification of multispectral LiDAR data in urban areas
por: Huo, Lian-Zhi, et al.
Publicado: (2018) -
PCA-based supervised identification of biological soil crusts in multispectral images
por: Fischer, Thomas
Publicado: (2019)