Cargando…
Feed-Forward Neural Network Soft-Sensor Modeling of Flotation Process Based on Particle Swarm Optimization and Gravitational Search Algorithm
For predicting the key technology indicators (concentrate grade and tailings recovery rate) of flotation process, a feed-forward neural network (FNN) based soft-sensor model optimized by the hybrid algorithm combining particle swarm optimization (PSO) algorithm and gravitational search algorithm (GS...
Autores principales: | Wang, Jie-Sheng, Han, Shuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637155/ https://www.ncbi.nlm.nih.gov/pubmed/26583034 http://dx.doi.org/10.1155/2015/147843 |
Ejemplares similares
-
Simple gravitational particle swarm algorithm for multimodal optimization problems
por: Yamanaka, Yoshikazu, et al.
Publicado: (2021) -
Features Extraction of Flotation Froth Images and BP Neural Network Soft-Sensor Model of Concentrate Grade Optimized by Shuffled Cuckoo Searching Algorithm
por: Wang, Jie-sheng, et al.
Publicado: (2014) -
Training a Feedforward Neural Network Using Hybrid Gravitational Search Algorithm with Dynamic Multiswarm Particle Swarm Optimization
por: Nagra, Arfan Ali, et al.
Publicado: (2022) -
Design of Financial Management Model Using the Forward Neural Network Based on Particle Swarm Optimization Algorithm
por: Pan, Yilin
Publicado: (2022) -
Retracted: Design of Financial Management Model Using the Forward Neural Network Based on Particle Swarm Optimization Algorithm
por: Intelligence and Neuroscience, Computational
Publicado: (2023)