Cargando…

Reconstruction of a Real World Social Network using the Potts Model and Loopy Belief Propagation

The scope of this paper is to test the adoption of a statistical model derived from Condensed Matter Physics, for the reconstruction of the structure of a social network. The inverse Potts model, traditionally applied to recursive observations of quantum states in an ensemble of particles, is here a...

Descripción completa

Detalles Bibliográficos
Autores principales: Bisconti, Cristian, Corallo, Angelo, Fortunato, Laura, Gentile, Antonio A., Massafra, Andrea, Pellè, Piergiuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637411/
https://www.ncbi.nlm.nih.gov/pubmed/26617539
http://dx.doi.org/10.3389/fpsyg.2015.01698
Descripción
Sumario:The scope of this paper is to test the adoption of a statistical model derived from Condensed Matter Physics, for the reconstruction of the structure of a social network. The inverse Potts model, traditionally applied to recursive observations of quantum states in an ensemble of particles, is here addressed to observations of the members' states in an organization and their (anti)correlations, thus inferring interactions as links among the members. Adopting proper (Bethe) approximations, such an inverse problem is showed to be tractable. Within an operational framework, this network-reconstruction method is tested for a small real-world social network, the Italian parliament. In this study case, it is easy to track statuses of the parliament members, using (co)sponsorships of law proposals as the initial dataset. In previous studies of similar activity-based networks, the graph structure was inferred directly from activity co-occurrences: here we compare our statistical reconstruction with such standard methods, outlining discrepancies and advantages.