Cargando…

Generating multi-atom entangled W states via light-matter interface based fusion mechanism

W state is a key resource in quantum communication. Fusion technology has been proven to be a good candidate for preparing a large-size W state from two or more small-size W states in linear optical system. It is of great importance to study how to fuse W states via light-matter interface. Here we s...

Descripción completa

Detalles Bibliográficos
Autores principales: Zang, Xue-Ping, Yang, Ming, Ozaydin, Fatih, Song, Wei, Cao, Zhuo-Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4637831/
https://www.ncbi.nlm.nih.gov/pubmed/26548649
http://dx.doi.org/10.1038/srep16245
Descripción
Sumario:W state is a key resource in quantum communication. Fusion technology has been proven to be a good candidate for preparing a large-size W state from two or more small-size W states in linear optical system. It is of great importance to study how to fuse W states via light-matter interface. Here we show that it is possible to prepare large-size W-state networks using a fusion mechanism in cavity QED system. The detuned interaction between three atoms and a vacuum cavity mode constitute the main fusion mechanism, based on which two or three small-size atomic W states can be fused into a larger-size W state. If no excitation is detected from those three atoms, the remaining atoms are still in the product of two or three new W states, which can be re-fused. The complicated Fredkin gate used in the previous fusion schemes is avoided here. W states of size 2 can be fused as well. The feasibility analysis shows that our fusion processes maybe implementable with the current technology. Our results demonstrate how the light-matter interaction based fusion mechanism can be realized, and may become the starting point for the fusion of multipartite entanglement in cavity QED system.