Cargando…
Machine Learning-based Classification of Diffuse Large B-cell Lymphoma Patients by Their Protein Expression Profiles
Characterization of tumors at the molecular level has improved our knowledge of cancer causation and progression. Proteomic analysis of their signaling pathways promises to enhance our understanding of cancer aberrations at the functional level, but this requires accurate and robust tools. Here, we...
Autores principales: | Deeb, Sally J., Tyanova, Stefka, Hummel, Michael, Schmidt-Supprian, Marc, Cox, Juergen, Mann, Matthias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Biochemistry and Molecular Biology
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4638038/ https://www.ncbi.nlm.nih.gov/pubmed/26311899 http://dx.doi.org/10.1074/mcp.M115.050245 |
Ejemplares similares
-
Super-SILAC Allows Classification of Diffuse Large B-cell Lymphoma Subtypes by Their Protein Expression Profiles
por: Deeb, Sally J., et al.
Publicado: (2012) -
Proteomic maps of breast cancer subtypes
por: Tyanova, Stefka, et al.
Publicado: (2016) -
Visualization of LC‐MS/MS proteomics data in MaxQuant
por: Tyanova, Stefka, et al.
Publicado: (2015) -
Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins
por: Tyanova, Stefka, et al.
Publicado: (2013) -
Machine learning‐based classification of diffuse large B‐cell lymphoma patients by eight gene expression profiles
por: Zhao, Shuangtao, et al.
Publicado: (2016)