Cargando…
Sub-phonon-period compression of electron pulses for atomic diffraction
Visualizing the rearrangement of atoms in a wide range of molecular and condensed-matter systems requires resolving picometre displacements on a 10-fs timescale, which is achievable using pump–probe diffraction, given short enough pulses. Here we demonstrate the compression of single-electron pulses...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640064/ https://www.ncbi.nlm.nih.gov/pubmed/26502750 http://dx.doi.org/10.1038/ncomms9723 |
Sumario: | Visualizing the rearrangement of atoms in a wide range of molecular and condensed-matter systems requires resolving picometre displacements on a 10-fs timescale, which is achievable using pump–probe diffraction, given short enough pulses. Here we demonstrate the compression of single-electron pulses with a de Broglie wavelength of 0.08 ångström to a full-width at half-maximum duration of 28 fs or equivalently 12-fs root-mean square, substantially shorter than most phonon periods and molecular normal modes. Atomic resolution diffraction from a complex organic molecule is obtained with good signal-to-noise ratio within a data acquisition period of minutes. The electron-laser timing is found to be stable within 5 fs (s.d.) over several hours, allowing pump–probe diffraction at repetitive excitation. These measurements show the feasibility of laser-pump/electron-probe scans that can resolve the fastest atomic motions relevant in reversible condensed-matter transformations and organic chemistry. |
---|