Cargando…
Predicting Optimal Outcomes in Cognitive Therapy or Interpersonal Psychotherapy for Depressed Individuals Using the Personalized Advantage Index Approach
INTRODUCTION: Although psychotherapies for depression produce equivalent outcomes, individual patients respond differently to different therapies. Predictors of outcome have been identified in the context of randomized trials, but this information has not been used to predict which treatment works b...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640504/ https://www.ncbi.nlm.nih.gov/pubmed/26554707 http://dx.doi.org/10.1371/journal.pone.0140771 |
_version_ | 1782400079941861376 |
---|---|
author | Huibers, Marcus J. H. Cohen, Zachary D. Lemmens, Lotte H. J. M. Arntz, Arnoud Peeters, Frenk P. M. L. Cuijpers, Pim DeRubeis, Robert J. |
author_facet | Huibers, Marcus J. H. Cohen, Zachary D. Lemmens, Lotte H. J. M. Arntz, Arnoud Peeters, Frenk P. M. L. Cuijpers, Pim DeRubeis, Robert J. |
author_sort | Huibers, Marcus J. H. |
collection | PubMed |
description | INTRODUCTION: Although psychotherapies for depression produce equivalent outcomes, individual patients respond differently to different therapies. Predictors of outcome have been identified in the context of randomized trials, but this information has not been used to predict which treatment works best for the depressed individual. In this paper, we aim to replicate a recently developed treatment selection method, using data from an RCT comparing the effects of cognitive therapy (CT) and interpersonal psychotherapy (IPT). METHODS: 134 depressed patients completed the pre- and post-treatment BDI-II assessment. First, we identified baseline predictors and moderators. Second, individual treatment recommendations were generated by combining the identified predictors and moderators in an algorithm that produces the Personalized Advantage Index (PAI), a measure of the predicted advantage in one therapy compared to the other, using standard regression analyses and the leave-one-out cross-validation approach. RESULTS: We found five predictors (gender, employment status, anxiety, personality disorder and quality of life) and six moderators (somatic complaints, cognitive problems, paranoid symptoms, interpersonal self-sacrificing, attributional style and number of life events) of treatment outcome. The mean average PAI value was 8.9 BDI points, and 63% of the sample was predicted to have a clinically meaningful advantage in one of the therapies. Those who were randomized to their predicted optimal treatment (either CT or IPT) had an observed mean end-BDI of 11.8, while those who received their predicted non-optimal treatment had an end-BDI of 17.8 (effect size for the difference = 0.51). DISCUSSION: Depressed patients who were randomized to their predicted optimal treatment fared much better than those randomized to their predicted non-optimal treatment. The PAI provides a great opportunity for formal decision-making to improve individual patient outcomes in depression. Although the utility of the PAI approach will need to be evaluated in prospective research, this study promotes the development of a treatment selection approach that can be used in regular mental health care, advancing the goals of personalized medicine. |
format | Online Article Text |
id | pubmed-4640504 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46405042015-11-13 Predicting Optimal Outcomes in Cognitive Therapy or Interpersonal Psychotherapy for Depressed Individuals Using the Personalized Advantage Index Approach Huibers, Marcus J. H. Cohen, Zachary D. Lemmens, Lotte H. J. M. Arntz, Arnoud Peeters, Frenk P. M. L. Cuijpers, Pim DeRubeis, Robert J. PLoS One Research Article INTRODUCTION: Although psychotherapies for depression produce equivalent outcomes, individual patients respond differently to different therapies. Predictors of outcome have been identified in the context of randomized trials, but this information has not been used to predict which treatment works best for the depressed individual. In this paper, we aim to replicate a recently developed treatment selection method, using data from an RCT comparing the effects of cognitive therapy (CT) and interpersonal psychotherapy (IPT). METHODS: 134 depressed patients completed the pre- and post-treatment BDI-II assessment. First, we identified baseline predictors and moderators. Second, individual treatment recommendations were generated by combining the identified predictors and moderators in an algorithm that produces the Personalized Advantage Index (PAI), a measure of the predicted advantage in one therapy compared to the other, using standard regression analyses and the leave-one-out cross-validation approach. RESULTS: We found five predictors (gender, employment status, anxiety, personality disorder and quality of life) and six moderators (somatic complaints, cognitive problems, paranoid symptoms, interpersonal self-sacrificing, attributional style and number of life events) of treatment outcome. The mean average PAI value was 8.9 BDI points, and 63% of the sample was predicted to have a clinically meaningful advantage in one of the therapies. Those who were randomized to their predicted optimal treatment (either CT or IPT) had an observed mean end-BDI of 11.8, while those who received their predicted non-optimal treatment had an end-BDI of 17.8 (effect size for the difference = 0.51). DISCUSSION: Depressed patients who were randomized to their predicted optimal treatment fared much better than those randomized to their predicted non-optimal treatment. The PAI provides a great opportunity for formal decision-making to improve individual patient outcomes in depression. Although the utility of the PAI approach will need to be evaluated in prospective research, this study promotes the development of a treatment selection approach that can be used in regular mental health care, advancing the goals of personalized medicine. Public Library of Science 2015-11-10 /pmc/articles/PMC4640504/ /pubmed/26554707 http://dx.doi.org/10.1371/journal.pone.0140771 Text en © 2015 Huibers et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Huibers, Marcus J. H. Cohen, Zachary D. Lemmens, Lotte H. J. M. Arntz, Arnoud Peeters, Frenk P. M. L. Cuijpers, Pim DeRubeis, Robert J. Predicting Optimal Outcomes in Cognitive Therapy or Interpersonal Psychotherapy for Depressed Individuals Using the Personalized Advantage Index Approach |
title | Predicting Optimal Outcomes in Cognitive Therapy or Interpersonal Psychotherapy for Depressed Individuals Using the Personalized Advantage Index Approach |
title_full | Predicting Optimal Outcomes in Cognitive Therapy or Interpersonal Psychotherapy for Depressed Individuals Using the Personalized Advantage Index Approach |
title_fullStr | Predicting Optimal Outcomes in Cognitive Therapy or Interpersonal Psychotherapy for Depressed Individuals Using the Personalized Advantage Index Approach |
title_full_unstemmed | Predicting Optimal Outcomes in Cognitive Therapy or Interpersonal Psychotherapy for Depressed Individuals Using the Personalized Advantage Index Approach |
title_short | Predicting Optimal Outcomes in Cognitive Therapy or Interpersonal Psychotherapy for Depressed Individuals Using the Personalized Advantage Index Approach |
title_sort | predicting optimal outcomes in cognitive therapy or interpersonal psychotherapy for depressed individuals using the personalized advantage index approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640504/ https://www.ncbi.nlm.nih.gov/pubmed/26554707 http://dx.doi.org/10.1371/journal.pone.0140771 |
work_keys_str_mv | AT huibersmarcusjh predictingoptimaloutcomesincognitivetherapyorinterpersonalpsychotherapyfordepressedindividualsusingthepersonalizedadvantageindexapproach AT cohenzacharyd predictingoptimaloutcomesincognitivetherapyorinterpersonalpsychotherapyfordepressedindividualsusingthepersonalizedadvantageindexapproach AT lemmenslottehjm predictingoptimaloutcomesincognitivetherapyorinterpersonalpsychotherapyfordepressedindividualsusingthepersonalizedadvantageindexapproach AT arntzarnoud predictingoptimaloutcomesincognitivetherapyorinterpersonalpsychotherapyfordepressedindividualsusingthepersonalizedadvantageindexapproach AT peetersfrenkpml predictingoptimaloutcomesincognitivetherapyorinterpersonalpsychotherapyfordepressedindividualsusingthepersonalizedadvantageindexapproach AT cuijperspim predictingoptimaloutcomesincognitivetherapyorinterpersonalpsychotherapyfordepressedindividualsusingthepersonalizedadvantageindexapproach AT derubeisrobertj predictingoptimaloutcomesincognitivetherapyorinterpersonalpsychotherapyfordepressedindividualsusingthepersonalizedadvantageindexapproach |