Cargando…

Visualization of superparamagnetic dynamics in magnetic topological insulators

Quantized Hall conductance is a generic feature of two-dimensional electronic systems with broken time reversal symmetry. In the quantum anomalous Hall state recently discovered in magnetic topological insulators, time reversal symmetry is believed to be broken by long-range ferromagnetic order, wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Lachman, Ella O., Young, Andrea F., Richardella, Anthony, Cuppens, Jo, Naren, H. R., Anahory, Yonathan, Meltzer, Alexander Y., Kandala, Abhinav, Kempinger, Susan, Myasoedov, Yuri, Huber, Martin E., Samarth, Nitin, Zeldov, Eli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640587/
https://www.ncbi.nlm.nih.gov/pubmed/26601138
http://dx.doi.org/10.1126/sciadv.1500740
_version_ 1782400098333884416
author Lachman, Ella O.
Young, Andrea F.
Richardella, Anthony
Cuppens, Jo
Naren, H. R.
Anahory, Yonathan
Meltzer, Alexander Y.
Kandala, Abhinav
Kempinger, Susan
Myasoedov, Yuri
Huber, Martin E.
Samarth, Nitin
Zeldov, Eli
author_facet Lachman, Ella O.
Young, Andrea F.
Richardella, Anthony
Cuppens, Jo
Naren, H. R.
Anahory, Yonathan
Meltzer, Alexander Y.
Kandala, Abhinav
Kempinger, Susan
Myasoedov, Yuri
Huber, Martin E.
Samarth, Nitin
Zeldov, Eli
author_sort Lachman, Ella O.
collection PubMed
description Quantized Hall conductance is a generic feature of two-dimensional electronic systems with broken time reversal symmetry. In the quantum anomalous Hall state recently discovered in magnetic topological insulators, time reversal symmetry is believed to be broken by long-range ferromagnetic order, with quantized resistance observed even at zero external magnetic field. We use scanning nanoSQUID (nano–superconducting quantum interference device) magnetic imaging to provide a direct visualization of the dynamics of the quantum phase transition between the two anomalous Hall plateaus in a Cr-doped (Bi,Sb)(2)Te(3) thin film. Contrary to naive expectations based on macroscopic magnetometry, our measurements reveal a superparamagnetic state formed by weakly interacting magnetic domains with a characteristic size of a few tens of nanometers. The magnetic phase transition occurs through random reversals of these local moments, which drive the electronic Hall plateau transition. Surprisingly, we find that the electronic system can, in turn, drive the dynamics of the magnetic system, revealing a subtle interplay between the two coupled quantum phase transitions.
format Online
Article
Text
id pubmed-4640587
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-46405872015-11-23 Visualization of superparamagnetic dynamics in magnetic topological insulators Lachman, Ella O. Young, Andrea F. Richardella, Anthony Cuppens, Jo Naren, H. R. Anahory, Yonathan Meltzer, Alexander Y. Kandala, Abhinav Kempinger, Susan Myasoedov, Yuri Huber, Martin E. Samarth, Nitin Zeldov, Eli Sci Adv Research Articles Quantized Hall conductance is a generic feature of two-dimensional electronic systems with broken time reversal symmetry. In the quantum anomalous Hall state recently discovered in magnetic topological insulators, time reversal symmetry is believed to be broken by long-range ferromagnetic order, with quantized resistance observed even at zero external magnetic field. We use scanning nanoSQUID (nano–superconducting quantum interference device) magnetic imaging to provide a direct visualization of the dynamics of the quantum phase transition between the two anomalous Hall plateaus in a Cr-doped (Bi,Sb)(2)Te(3) thin film. Contrary to naive expectations based on macroscopic magnetometry, our measurements reveal a superparamagnetic state formed by weakly interacting magnetic domains with a characteristic size of a few tens of nanometers. The magnetic phase transition occurs through random reversals of these local moments, which drive the electronic Hall plateau transition. Surprisingly, we find that the electronic system can, in turn, drive the dynamics of the magnetic system, revealing a subtle interplay between the two coupled quantum phase transitions. American Association for the Advancement of Science 2015-11-06 /pmc/articles/PMC4640587/ /pubmed/26601138 http://dx.doi.org/10.1126/sciadv.1500740 Text en Copyright © 2015, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Lachman, Ella O.
Young, Andrea F.
Richardella, Anthony
Cuppens, Jo
Naren, H. R.
Anahory, Yonathan
Meltzer, Alexander Y.
Kandala, Abhinav
Kempinger, Susan
Myasoedov, Yuri
Huber, Martin E.
Samarth, Nitin
Zeldov, Eli
Visualization of superparamagnetic dynamics in magnetic topological insulators
title Visualization of superparamagnetic dynamics in magnetic topological insulators
title_full Visualization of superparamagnetic dynamics in magnetic topological insulators
title_fullStr Visualization of superparamagnetic dynamics in magnetic topological insulators
title_full_unstemmed Visualization of superparamagnetic dynamics in magnetic topological insulators
title_short Visualization of superparamagnetic dynamics in magnetic topological insulators
title_sort visualization of superparamagnetic dynamics in magnetic topological insulators
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640587/
https://www.ncbi.nlm.nih.gov/pubmed/26601138
http://dx.doi.org/10.1126/sciadv.1500740
work_keys_str_mv AT lachmanellao visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT youngandreaf visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT richardellaanthony visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT cuppensjo visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT narenhr visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT anahoryyonathan visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT meltzeralexandery visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT kandalaabhinav visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT kempingersusan visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT myasoedovyuri visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT hubermartine visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT samarthnitin visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators
AT zeldoveli visualizationofsuperparamagneticdynamicsinmagnetictopologicalinsulators