Cargando…

Optimized unconventional superconductivity in a molecular Jahn-Teller metal

Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T(c) is a major challenge for all unconventional superconductors. The molecular A(3)C(60) fulleride superconductors have a parent antiferromagnetic insulator in common with the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zadik, Ruth H., Takabayashi, Yasuhiro, Klupp, Gyöngyi, Colman, Ross H., Ganin, Alexey Y., Potočnik, Anton, Jeglič, Peter, Arčon, Denis, Matus, Péter, Kamarás, Katalin, Kasahara, Yuichi, Iwasa, Yoshihiro, Fitch, Andrew N., Ohishi, Yasuo, Garbarino, Gaston, Kato, Kenichi, Rosseinsky, Matthew J., Prassides, Kosmas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640631/
https://www.ncbi.nlm.nih.gov/pubmed/26601168
http://dx.doi.org/10.1126/sciadv.1500059
Descripción
Sumario:Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T(c) is a major challenge for all unconventional superconductors. The molecular A(3)C(60) fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C(60)(3–) electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller–active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of T(c) with interfulleride separation, demonstrating molecular electronic structure control of superconductivity.