Cargando…

Optimized unconventional superconductivity in a molecular Jahn-Teller metal

Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T(c) is a major challenge for all unconventional superconductors. The molecular A(3)C(60) fulleride superconductors have a parent antiferromagnetic insulator in common with the...

Descripción completa

Detalles Bibliográficos
Autores principales: Zadik, Ruth H., Takabayashi, Yasuhiro, Klupp, Gyöngyi, Colman, Ross H., Ganin, Alexey Y., Potočnik, Anton, Jeglič, Peter, Arčon, Denis, Matus, Péter, Kamarás, Katalin, Kasahara, Yuichi, Iwasa, Yoshihiro, Fitch, Andrew N., Ohishi, Yasuo, Garbarino, Gaston, Kato, Kenichi, Rosseinsky, Matthew J., Prassides, Kosmas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640631/
https://www.ncbi.nlm.nih.gov/pubmed/26601168
http://dx.doi.org/10.1126/sciadv.1500059
_version_ 1782400107205885952
author Zadik, Ruth H.
Takabayashi, Yasuhiro
Klupp, Gyöngyi
Colman, Ross H.
Ganin, Alexey Y.
Potočnik, Anton
Jeglič, Peter
Arčon, Denis
Matus, Péter
Kamarás, Katalin
Kasahara, Yuichi
Iwasa, Yoshihiro
Fitch, Andrew N.
Ohishi, Yasuo
Garbarino, Gaston
Kato, Kenichi
Rosseinsky, Matthew J.
Prassides, Kosmas
author_facet Zadik, Ruth H.
Takabayashi, Yasuhiro
Klupp, Gyöngyi
Colman, Ross H.
Ganin, Alexey Y.
Potočnik, Anton
Jeglič, Peter
Arčon, Denis
Matus, Péter
Kamarás, Katalin
Kasahara, Yuichi
Iwasa, Yoshihiro
Fitch, Andrew N.
Ohishi, Yasuo
Garbarino, Gaston
Kato, Kenichi
Rosseinsky, Matthew J.
Prassides, Kosmas
author_sort Zadik, Ruth H.
collection PubMed
description Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T(c) is a major challenge for all unconventional superconductors. The molecular A(3)C(60) fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C(60)(3–) electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller–active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of T(c) with interfulleride separation, demonstrating molecular electronic structure control of superconductivity.
format Online
Article
Text
id pubmed-4640631
institution National Center for Biotechnology Information
language English
publishDate 2015
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-46406312015-11-23 Optimized unconventional superconductivity in a molecular Jahn-Teller metal Zadik, Ruth H. Takabayashi, Yasuhiro Klupp, Gyöngyi Colman, Ross H. Ganin, Alexey Y. Potočnik, Anton Jeglič, Peter Arčon, Denis Matus, Péter Kamarás, Katalin Kasahara, Yuichi Iwasa, Yoshihiro Fitch, Andrew N. Ohishi, Yasuo Garbarino, Gaston Kato, Kenichi Rosseinsky, Matthew J. Prassides, Kosmas Sci Adv Research Articles Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T(c) is a major challenge for all unconventional superconductors. The molecular A(3)C(60) fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C(60)(3–) electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller–active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of T(c) with interfulleride separation, demonstrating molecular electronic structure control of superconductivity. American Association for the Advancement of Science 2015-04-17 /pmc/articles/PMC4640631/ /pubmed/26601168 http://dx.doi.org/10.1126/sciadv.1500059 Text en Copyright © 2015, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Research Articles
Zadik, Ruth H.
Takabayashi, Yasuhiro
Klupp, Gyöngyi
Colman, Ross H.
Ganin, Alexey Y.
Potočnik, Anton
Jeglič, Peter
Arčon, Denis
Matus, Péter
Kamarás, Katalin
Kasahara, Yuichi
Iwasa, Yoshihiro
Fitch, Andrew N.
Ohishi, Yasuo
Garbarino, Gaston
Kato, Kenichi
Rosseinsky, Matthew J.
Prassides, Kosmas
Optimized unconventional superconductivity in a molecular Jahn-Teller metal
title Optimized unconventional superconductivity in a molecular Jahn-Teller metal
title_full Optimized unconventional superconductivity in a molecular Jahn-Teller metal
title_fullStr Optimized unconventional superconductivity in a molecular Jahn-Teller metal
title_full_unstemmed Optimized unconventional superconductivity in a molecular Jahn-Teller metal
title_short Optimized unconventional superconductivity in a molecular Jahn-Teller metal
title_sort optimized unconventional superconductivity in a molecular jahn-teller metal
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640631/
https://www.ncbi.nlm.nih.gov/pubmed/26601168
http://dx.doi.org/10.1126/sciadv.1500059
work_keys_str_mv AT zadikruthh optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT takabayashiyasuhiro optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT kluppgyongyi optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT colmanrossh optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT ganinalexeyy optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT potocnikanton optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT jeglicpeter optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT arcondenis optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT matuspeter optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT kamaraskatalin optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT kasaharayuichi optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT iwasayoshihiro optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT fitchandrewn optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT ohishiyasuo optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT garbarinogaston optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT katokenichi optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT rosseinskymatthewj optimizedunconventionalsuperconductivityinamolecularjahntellermetal
AT prassideskosmas optimizedunconventionalsuperconductivityinamolecularjahntellermetal