Cargando…
Optimized unconventional superconductivity in a molecular Jahn-Teller metal
Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T(c) is a major challenge for all unconventional superconductors. The molecular A(3)C(60) fulleride superconductors have a parent antiferromagnetic insulator in common with the...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640631/ https://www.ncbi.nlm.nih.gov/pubmed/26601168 http://dx.doi.org/10.1126/sciadv.1500059 |
_version_ | 1782400107205885952 |
---|---|
author | Zadik, Ruth H. Takabayashi, Yasuhiro Klupp, Gyöngyi Colman, Ross H. Ganin, Alexey Y. Potočnik, Anton Jeglič, Peter Arčon, Denis Matus, Péter Kamarás, Katalin Kasahara, Yuichi Iwasa, Yoshihiro Fitch, Andrew N. Ohishi, Yasuo Garbarino, Gaston Kato, Kenichi Rosseinsky, Matthew J. Prassides, Kosmas |
author_facet | Zadik, Ruth H. Takabayashi, Yasuhiro Klupp, Gyöngyi Colman, Ross H. Ganin, Alexey Y. Potočnik, Anton Jeglič, Peter Arčon, Denis Matus, Péter Kamarás, Katalin Kasahara, Yuichi Iwasa, Yoshihiro Fitch, Andrew N. Ohishi, Yasuo Garbarino, Gaston Kato, Kenichi Rosseinsky, Matthew J. Prassides, Kosmas |
author_sort | Zadik, Ruth H. |
collection | PubMed |
description | Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T(c) is a major challenge for all unconventional superconductors. The molecular A(3)C(60) fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C(60)(3–) electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller–active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of T(c) with interfulleride separation, demonstrating molecular electronic structure control of superconductivity. |
format | Online Article Text |
id | pubmed-4640631 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-46406312015-11-23 Optimized unconventional superconductivity in a molecular Jahn-Teller metal Zadik, Ruth H. Takabayashi, Yasuhiro Klupp, Gyöngyi Colman, Ross H. Ganin, Alexey Y. Potočnik, Anton Jeglič, Peter Arčon, Denis Matus, Péter Kamarás, Katalin Kasahara, Yuichi Iwasa, Yoshihiro Fitch, Andrew N. Ohishi, Yasuo Garbarino, Gaston Kato, Kenichi Rosseinsky, Matthew J. Prassides, Kosmas Sci Adv Research Articles Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above T(c) is a major challenge for all unconventional superconductors. The molecular A(3)C(60) fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C(60)(3–) electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller–active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of T(c) with interfulleride separation, demonstrating molecular electronic structure control of superconductivity. American Association for the Advancement of Science 2015-04-17 /pmc/articles/PMC4640631/ /pubmed/26601168 http://dx.doi.org/10.1126/sciadv.1500059 Text en Copyright © 2015, The Authors http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Zadik, Ruth H. Takabayashi, Yasuhiro Klupp, Gyöngyi Colman, Ross H. Ganin, Alexey Y. Potočnik, Anton Jeglič, Peter Arčon, Denis Matus, Péter Kamarás, Katalin Kasahara, Yuichi Iwasa, Yoshihiro Fitch, Andrew N. Ohishi, Yasuo Garbarino, Gaston Kato, Kenichi Rosseinsky, Matthew J. Prassides, Kosmas Optimized unconventional superconductivity in a molecular Jahn-Teller metal |
title | Optimized unconventional superconductivity in a molecular Jahn-Teller metal |
title_full | Optimized unconventional superconductivity in a molecular Jahn-Teller metal |
title_fullStr | Optimized unconventional superconductivity in a molecular Jahn-Teller metal |
title_full_unstemmed | Optimized unconventional superconductivity in a molecular Jahn-Teller metal |
title_short | Optimized unconventional superconductivity in a molecular Jahn-Teller metal |
title_sort | optimized unconventional superconductivity in a molecular jahn-teller metal |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640631/ https://www.ncbi.nlm.nih.gov/pubmed/26601168 http://dx.doi.org/10.1126/sciadv.1500059 |
work_keys_str_mv | AT zadikruthh optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT takabayashiyasuhiro optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT kluppgyongyi optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT colmanrossh optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT ganinalexeyy optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT potocnikanton optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT jeglicpeter optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT arcondenis optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT matuspeter optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT kamaraskatalin optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT kasaharayuichi optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT iwasayoshihiro optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT fitchandrewn optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT ohishiyasuo optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT garbarinogaston optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT katokenichi optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT rosseinskymatthewj optimizedunconventionalsuperconductivityinamolecularjahntellermetal AT prassideskosmas optimizedunconventionalsuperconductivityinamolecularjahntellermetal |