Cargando…
Continuous Distributed Representation of Biological Sequences for Deep Proteomics and Genomics
We introduce a new representation and feature extraction method for biological sequences. Named bio-vectors (BioVec) to refer to biological sequences in general with protein-vectors (ProtVec) for proteins (amino-acid sequences) and gene-vectors (GeneVec) for gene sequences, this representation can b...
Autores principales: | Asgari, Ehsaneddin, Mofrad, Mohammad R. K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640716/ https://www.ncbi.nlm.nih.gov/pubmed/26555596 http://dx.doi.org/10.1371/journal.pone.0141287 |
Ejemplares similares
-
MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples
por: Asgari, Ehsaneddin, et al.
Publicado: (2018) -
MicroPheno: predicting environments and host phenotypes from 16S rRNA gene sequencing using a k-mer based representation of shallow sub-samples
por: Asgari, Ehsaneddin, et al.
Publicado: (2019) -
EpitopeVec: linear epitope prediction using deep protein sequence embeddings
por: Bahai, Akash, et al.
Publicado: (2021) -
Probabilistic variable-length segmentation of protein sequences for discriminative motif discovery (DiMotif) and sequence embedding (ProtVecX)
por: Asgari, Ehsaneddin, et al.
Publicado: (2019) -
GO Bench: shared hub for universal benchmarking of machine learning-based protein functional annotations
por: Dickson, Andrew, et al.
Publicado: (2023)