Cargando…
Cross-Scale Variation in Biodiversity-Environment Links Illustrated by Coastal Sandflat Communities
Spatial variation in the composition of communities is the product of many biotic and environmental interactions. A neglected factor in the analysis of community distribution patterns is the multi-scale nature of the data, which has implications for understanding ecological processes and the develop...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4640831/ https://www.ncbi.nlm.nih.gov/pubmed/26555237 http://dx.doi.org/10.1371/journal.pone.0142411 |
Sumario: | Spatial variation in the composition of communities is the product of many biotic and environmental interactions. A neglected factor in the analysis of community distribution patterns is the multi-scale nature of the data, which has implications for understanding ecological processes and the development of conservation and environmental management practice. Drawing on recently established multivariate spatial analyses, we investigate whether including relationships between spatial structure and abiotic variables enable us to better discern patterns of species and communities across scales. Data comprised 1200 macrozoobenthic samples collected over an array of distances (30 cm to 1 km) in three New Zealand harbours, as well as commonly used abiotic variables, such as sediment characteristics and chlorophyll a concentrations, measured at the same scales. Moran’s eigenvector mapping was used to extract spatial scales at which communities were structured. Benthic communities, representing primarily bivalves, polychaetes and crustaceans, were spatially structured at four spatial scales, i.e. >100 m, 50–100 m, 50–15 m, and < 15 m. A broad selection of abiotic variables contributed to the large-scale variation, whereas a more limited set explained part of the fine-scale community structure. Across all scales, less than 30% of the variation in spatial structure was captured by our analysis. The large number of species (48) making up the 10 highest species scores based on redundancy analyses illustrate the variability of species-scale associations. Our results emphasise that abiotic variables and biodiversity are related at all scales investigated and stress the importance of assessing the relationship between environmental variables and the abundance and distribution of biological assemblages across a range of different scales. |
---|