Cargando…

Paucity of PD-L1 Expression in Prostate Cancer: Innate and Adaptive Immune Resistance

BACKGROUND: Primary prostate cancers are infiltrated with PD-1 expressing CD8+ T cells. However, in early clinical trials, men with mCRPC did not respond to PD-1 blockade as a monotherapy. One explanation for this unresponsiveness could be that prostate tumors generally do not express PD-L1, the pri...

Descripción completa

Detalles Bibliográficos
Autores principales: Martin, Allison M., Nirschl, Thomas R., Nirschl, Christopher J., Francica, Brian J., Kochel, Christina M., van Bokhoven, Adrie, Meeker, Alan K., Lucia, M. Scott, Anders, Robert A., DeMarzo, Angelo M., Drake, Charles G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641011/
https://www.ncbi.nlm.nih.gov/pubmed/26260996
http://dx.doi.org/10.1038/pcan.2015.39
Descripción
Sumario:BACKGROUND: Primary prostate cancers are infiltrated with PD-1 expressing CD8+ T cells. However, in early clinical trials, men with mCRPC did not respond to PD-1 blockade as a monotherapy. One explanation for this unresponsiveness could be that prostate tumors generally do not express PD-L1, the primary ligand for PD-1. However, lack of PD-L1 expression in prostate cancer would be surprising, given that PTEN loss is relatively common in prostate cancer and several studies have shown that PTEN loss correlates with PD-L1 up-regulation - constituting a mechanism of innate immune resistance. This study tested whether prostate cancer cells were capable of expressing PD-L1, and whether the rare PD-L1 expression that occurs in human specimens correlates with PTEN loss. METHODS: Human prostate cancer cell lines were evaluated for PD-L1 expression and loss of PTEN by flow cytometry and western blotting, respectively. Immunohistochemical (IHC) staining for PTEN was correlated with PD-L1 IHC using a series of resected human prostate cancer samples. RESULTS: In vitro, many prostate cancer cell lines up-regulated PD-L1 expression in response to inflammatory cytokines, consistent with adaptive immune resistance. In these cell lines, no association between PTEN loss and PD-L1 expression was apparent. In primary prostate tumors, PD-L1 expression was rare, and was not associated with PTEN loss. CONCLUSIONS: These studies show that some prostate cancer cell lines are capable of expressing PD-L1. However, in human prostate cancer, PTEN loss is not associated with PD-L1 expression, arguing against innate immune resistance as a mechanism that mitigates anti-tumor immune responses in this disease.