Cargando…
Using Weighted Sparse Representation Model Combined with Discrete Cosine Transformation to Predict Protein-Protein Interactions from Protein Sequence
Increasing demand for the knowledge about protein-protein interactions (PPIs) is promoting the development of methods for predicting protein interaction network. Although high-throughput technologies have generated considerable PPIs data for various organisms, it has inevitable drawbacks such as hig...
Autores principales: | Huang, Yu-An, You, Zhu-Hong, Gao, Xin, Wong, Leon, Wang, Lirong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641304/ https://www.ncbi.nlm.nih.gov/pubmed/26634213 http://dx.doi.org/10.1155/2015/902198 |
Ejemplares similares
-
Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding
por: Huang, Yu-An, et al.
Publicado: (2016) -
Prediction of Protein–Protein Interactions with Clustered Amino Acids and Weighted Sparse Representation
por: Huang, Qiaoying, et al.
Publicado: (2015) -
Perceptual image coding with discrete cosine transform
por: Tan, Ee-Leng, et al.
Publicado: (2015) -
Discrete cosine transform: algorithms, advantages, applications
por: Rao, K R, et al.
Publicado: (1990) -
Discrete Cosine Transform for the Analysis of Essential Tremor
por: Solé-Casals, Jordi, et al.
Publicado: (2019)