Cargando…
QQ-SNV: single nucleotide variant detection at low frequency by comparing the quality quantiles
BACKGROUND: Next generation sequencing enables studying heterogeneous populations of viral infections. When the sequencing is done at high coverage depth (“deep sequencing”), low frequency variants can be detected. Here we present QQ-SNV (http://sourceforge.net/projects/qqsnv), a logistic regression...
Autores principales: | Van der Borght, Koen, Thys, Kim, Wetzels, Yves, Clement, Lieven, Verbist, Bie, Reumers, Joke, van Vlijmen, Herman, Aerssens, Jeroen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641353/ https://www.ncbi.nlm.nih.gov/pubmed/26554718 http://dx.doi.org/10.1186/s12859-015-0812-9 |
Ejemplares similares
-
ViVaMBC: estimating viral sequence variation in complex populations from illumina deep-sequencing data using model-based clustering
por: Verbist, Bie, et al.
Publicado: (2015) -
Multi-model inference using mixed effects from a linear regression based genetic algorithm
por: Van der Borght, Koen, et al.
Publicado: (2014) -
Quantitative prediction of integrase inhibitor resistance from genotype through consensus linear regression modeling
por: Van der Borght, Koen, et al.
Publicado: (2013) -
Efficiency of whole genome amplification of single circulating tumor cells enriched by CellSearch and sorted by FACS
por: Swennenhuis, Joost F, et al.
Publicado: (2013) -
On studentized residuals in the quantile regression framework
por: Ranganai, Edmore
Publicado: (2016)