Cargando…

Higher intrinsic network excitability in ventral compared with the dorsal hippocampus is controlled less effectively by GABA(B) receptors

BACKGROUND: Elucidating specializations of the intrinsic neuronal network between the dorsal and the ventral hippocampus is a recently emerging area of research that is expected to help us understand the mechanisms underlying large scale functional diversification along the hippocampus. The aim of t...

Descripción completa

Detalles Bibliográficos
Autor principal: Papatheodoropoulos, Costas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641374/
https://www.ncbi.nlm.nih.gov/pubmed/26556486
http://dx.doi.org/10.1186/s12868-015-0213-z
Descripción
Sumario:BACKGROUND: Elucidating specializations of the intrinsic neuronal network between the dorsal and the ventral hippocampus is a recently emerging area of research that is expected to help us understand the mechanisms underlying large scale functional diversification along the hippocampus. The aim of this study was to characterize spontaneous network activity between the dorsal and the ventral hippocampus induced under conditions of partial or complete blockade of GABAergic inhibition (i.e. disinhibition). RESULTS: Using field recordings from the CA3 and CA1 fields of hippocampal slices from adult rats I found that ventral compared with dorsal hippocampus slices displayed higher propensity for and higher frequency of occurrence of spontaneous field potentials (spfps) at every level of disinhibition. Also NMDA receptor-depended spfps (spfps(-nmda)) occurred with higher probability more frequently and were larger in the ventral compared with the dorsal hippocampus. Importantly, blockade of GABA(B) receptors produced a stronger effect in enhancing the probability of generation of spfps and spfps(-nmda) in the dorsal compared with the ventral hippocampal slices and increased spfps(-nmda) only in dorsal slices. CONCLUSION: These results demonstrate a higher intrinsic neuronal excitability of the ventral compared with the dorsal local circuitry with the considerable contribution of NMDA receptors. Furthermore, the GABA(B) receptors control the total and the NMDA receptor-dependent excitation much less effectively in the ventral part of the hippocampus. It is proposed that NMDA and GABA(B) receptors significantly contribute to differentiate local network dynamics between the dorsal and the ventral hippocampus with important implications in the information processing performed along the long hippocampal axis.