Cargando…

Emergence of Asynchronous Local Clocks in Excitable Media

Excitable media such as the myocardium or the brain consist of arrays of coupled excitable elements, in which the local excitation of a single element can propagate to its neighbors in the form of a non-linear autowave. Since each element has to pass through a refractory period immediately after exc...

Descripción completa

Detalles Bibliográficos
Autores principales: Gerum, Richard Carl, Fabry, Ben, Metzner, Claus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641646/
https://www.ncbi.nlm.nih.gov/pubmed/26559528
http://dx.doi.org/10.1371/journal.pone.0142490
Descripción
Sumario:Excitable media such as the myocardium or the brain consist of arrays of coupled excitable elements, in which the local excitation of a single element can propagate to its neighbors in the form of a non-linear autowave. Since each element has to pass through a refractory period immediately after excitation, the frequency of autowaves is self-limiting. In this work, we consider the case where each element is spontaneously excited at a fixed average rate and thereby initiates a new autowave. Although these spontaneous self-excitation events are modelled as independent Poisson point processes with exponentially distributed waiting times, the travelling autowaves lead collectively to a non-exponential, unimodal waiting time distribution for the individual elements. With increasing system size, a global ‘clock’ period T emerges as the most probable waiting time for each element, which fluctuates around T with an increasingly small but non-zero variance. This apparent synchronization between asynchronous, temporally uncorrelated point processes differs from synchronization effects between perfect oscillators interacting in a phase-aligning manner. Finally, we demonstrate that asynchronous local clocks also emerge in non-homogeneous systems in which the rates of self-excitation are different for all individuals, suggesting that this novel mechanism can occur in a wide range of excitable media.