Cargando…
COGNIZER: A Framework for Functional Annotation of Metagenomic Datasets
BACKGROUND: Recent advances in sequencing technologies have resulted in an unprecedented increase in the number of metagenomes that are being sequenced world-wide. Given their volume, functional annotation of metagenomic sequence datasets requires specialized computational tools/techniques. In spite...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641738/ https://www.ncbi.nlm.nih.gov/pubmed/26561344 http://dx.doi.org/10.1371/journal.pone.0142102 |
Sumario: | BACKGROUND: Recent advances in sequencing technologies have resulted in an unprecedented increase in the number of metagenomes that are being sequenced world-wide. Given their volume, functional annotation of metagenomic sequence datasets requires specialized computational tools/techniques. In spite of having high accuracy, existing stand-alone functional annotation tools necessitate end-users to perform compute-intensive homology searches of metagenomic datasets against "multiple" databases prior to functional analysis. Although, web-based functional annotation servers address to some extent the problem of availability of compute resources, uploading and analyzing huge volumes of sequence data on a shared public web-service has its own set of limitations. In this study, we present COGNIZER, a comprehensive stand-alone annotation framework which enables end-users to functionally annotate sequences constituting metagenomic datasets. The COGNIZER framework provides multiple workflow options. A subset of these options employs a novel directed-search strategy which helps in reducing the overall compute requirements for end-users. The COGNIZER framework includes a cross-mapping database that enables end-users to simultaneously derive/infer KEGG, Pfam, GO, and SEED subsystem information from the COG annotations. RESULTS: Validation experiments performed with real-world metagenomes and metatranscriptomes, generated using diverse sequencing technologies, indicate that the novel directed-search strategy employed in COGNIZER helps in reducing the compute requirements without significant loss in annotation accuracy. A comparison of COGNIZER's results with pre-computed benchmark values indicate the reliability of the cross-mapping database employed in COGNIZER. CONCLUSION: The COGNIZER framework is capable of comprehensively annotating any metagenomic or metatranscriptomic dataset from varied sequencing platforms in functional terms. Multiple search options in COGNIZER provide end-users the flexibility of choosing a homology search protocol based on available compute resources. The cross-mapping database in COGNIZER is of high utility since it enables end-users to directly infer/derive KEGG, Pfam, GO, and SEED subsystem annotations from COG categorizations. Furthermore, availability of COGNIZER as a stand-alone scalable implementation is expected to make it a valuable annotation tool in the field of metagenomic research. AVAILABILITY AND IMPLEMENTATION: A Linux implementation of COGNIZER is freely available for download from the following links: http://metagenomics.atc.tcs.com/cognizer, https://metagenomics.atc.tcs.com/function/cognizer. |
---|