Cargando…
Gene Expression Reaction Norms Unravel the Molecular and Cellular Processes Underpinning the Plastic Phenotypes of Alternanthera Philoxeroides in Contrasting Hydrological Conditions
Alternanthera philoxeroides is an amphibious invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation. Little is known about the molecular basis underlying environment-in...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641913/ https://www.ncbi.nlm.nih.gov/pubmed/26617628 http://dx.doi.org/10.3389/fpls.2015.00991 |
_version_ | 1782400263857897472 |
---|---|
author | Gao, Lexuan Geng, Yupeng Yang, Hongxing Hu, Yonghong Yang, Ji |
author_facet | Gao, Lexuan Geng, Yupeng Yang, Hongxing Hu, Yonghong Yang, Ji |
author_sort | Gao, Lexuan |
collection | PubMed |
description | Alternanthera philoxeroides is an amphibious invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation. Little is known about the molecular basis underlying environment-induced phenotypic changes. Variation in transcript abundance in A. philoxeroides was characterized throughout the time-courses of pond and upland treatments using RNA-Sequencing. Seven thousand eight hundred and five genes demonstrated variable expression in response to different treatments, forming 11 transcriptionally coordinated gene groups. Functional enrichment analysis of plastically expressed genes revealed pathway changes in hormone-mediated signaling, osmotic adjustment, cell wall remodeling, and programmed cell death, providing a mechanistic understanding of the biological processes underlying the phenotypic changes in A. philoxeroides. Both transcriptional modulation of environmentally sensitive loci and environmentally dependent control of regulatory loci influenced the plastic responses to the environment. Phenotypic responses and gene expression patterns to contrasting hydrological conditions were compared between A. philoxeroides and its alien congener Alternanthera pungens. The terricolous A. pungens displayed limited phenotypic plasticity to different treatments. It was postulated based on gene expression comparison that the interspecific variation in plasticity between A. philoxeroides and A. pungens was not due to environmentally-mediated changes in hormone levels but to variations in the type and relative abundance of different signal transducers and receptors expressed in the target tissue. |
format | Online Article Text |
id | pubmed-4641913 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-46419132015-11-27 Gene Expression Reaction Norms Unravel the Molecular and Cellular Processes Underpinning the Plastic Phenotypes of Alternanthera Philoxeroides in Contrasting Hydrological Conditions Gao, Lexuan Geng, Yupeng Yang, Hongxing Hu, Yonghong Yang, Ji Front Plant Sci Plant Science Alternanthera philoxeroides is an amphibious invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation. Little is known about the molecular basis underlying environment-induced phenotypic changes. Variation in transcript abundance in A. philoxeroides was characterized throughout the time-courses of pond and upland treatments using RNA-Sequencing. Seven thousand eight hundred and five genes demonstrated variable expression in response to different treatments, forming 11 transcriptionally coordinated gene groups. Functional enrichment analysis of plastically expressed genes revealed pathway changes in hormone-mediated signaling, osmotic adjustment, cell wall remodeling, and programmed cell death, providing a mechanistic understanding of the biological processes underlying the phenotypic changes in A. philoxeroides. Both transcriptional modulation of environmentally sensitive loci and environmentally dependent control of regulatory loci influenced the plastic responses to the environment. Phenotypic responses and gene expression patterns to contrasting hydrological conditions were compared between A. philoxeroides and its alien congener Alternanthera pungens. The terricolous A. pungens displayed limited phenotypic plasticity to different treatments. It was postulated based on gene expression comparison that the interspecific variation in plasticity between A. philoxeroides and A. pungens was not due to environmentally-mediated changes in hormone levels but to variations in the type and relative abundance of different signal transducers and receptors expressed in the target tissue. Frontiers Media S.A. 2015-11-12 /pmc/articles/PMC4641913/ /pubmed/26617628 http://dx.doi.org/10.3389/fpls.2015.00991 Text en Copyright © 2015 Gao, Geng, Yang, Hu and Yang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Gao, Lexuan Geng, Yupeng Yang, Hongxing Hu, Yonghong Yang, Ji Gene Expression Reaction Norms Unravel the Molecular and Cellular Processes Underpinning the Plastic Phenotypes of Alternanthera Philoxeroides in Contrasting Hydrological Conditions |
title | Gene Expression Reaction Norms Unravel the Molecular and Cellular Processes Underpinning the Plastic Phenotypes of Alternanthera Philoxeroides in Contrasting Hydrological Conditions |
title_full | Gene Expression Reaction Norms Unravel the Molecular and Cellular Processes Underpinning the Plastic Phenotypes of Alternanthera Philoxeroides in Contrasting Hydrological Conditions |
title_fullStr | Gene Expression Reaction Norms Unravel the Molecular and Cellular Processes Underpinning the Plastic Phenotypes of Alternanthera Philoxeroides in Contrasting Hydrological Conditions |
title_full_unstemmed | Gene Expression Reaction Norms Unravel the Molecular and Cellular Processes Underpinning the Plastic Phenotypes of Alternanthera Philoxeroides in Contrasting Hydrological Conditions |
title_short | Gene Expression Reaction Norms Unravel the Molecular and Cellular Processes Underpinning the Plastic Phenotypes of Alternanthera Philoxeroides in Contrasting Hydrological Conditions |
title_sort | gene expression reaction norms unravel the molecular and cellular processes underpinning the plastic phenotypes of alternanthera philoxeroides in contrasting hydrological conditions |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4641913/ https://www.ncbi.nlm.nih.gov/pubmed/26617628 http://dx.doi.org/10.3389/fpls.2015.00991 |
work_keys_str_mv | AT gaolexuan geneexpressionreactionnormsunravelthemolecularandcellularprocessesunderpinningtheplasticphenotypesofalternantheraphiloxeroidesincontrastinghydrologicalconditions AT gengyupeng geneexpressionreactionnormsunravelthemolecularandcellularprocessesunderpinningtheplasticphenotypesofalternantheraphiloxeroidesincontrastinghydrologicalconditions AT yanghongxing geneexpressionreactionnormsunravelthemolecularandcellularprocessesunderpinningtheplasticphenotypesofalternantheraphiloxeroidesincontrastinghydrologicalconditions AT huyonghong geneexpressionreactionnormsunravelthemolecularandcellularprocessesunderpinningtheplasticphenotypesofalternantheraphiloxeroidesincontrastinghydrologicalconditions AT yangji geneexpressionreactionnormsunravelthemolecularandcellularprocessesunderpinningtheplasticphenotypesofalternantheraphiloxeroidesincontrastinghydrologicalconditions |