Cargando…
Assessing Electronic Cigarette-Related Tweets for Sentiment and Content Using Supervised Machine Learning
BACKGROUND: Electronic cigarettes (e-cigarettes) continue to be a growing topic among social media users, especially on Twitter. The ability to analyze conversations about e-cigarettes in real-time can provide important insight into trends in the public’s knowledge, attitudes, and beliefs surroundin...
Autores principales: | Cole-Lewis, Heather, Varghese, Arun, Sanders, Amy, Schwarz, Mary, Pugatch, Jillian, Augustson, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642404/ https://www.ncbi.nlm.nih.gov/pubmed/26307512 http://dx.doi.org/10.2196/jmir.4392 |
Ejemplares similares
-
Social Listening: A Content Analysis of E-Cigarette Discussions on Twitter
por: Cole-Lewis, Heather, et al.
Publicado: (2015) -
A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis
por: Rustam, Furqan, et al.
Publicado: (2021) -
Tweets by People With Arthritis During the COVID-19 Pandemic: Content and Sentiment Analysis
por: Berkovic, Danielle, et al.
Publicado: (2020) -
The Painful Tweet: Text, Sentiment, and Community Structure Analyses of Tweets Pertaining to Pain
por: Tighe, Patrick J, et al.
Publicado: (2015) -
Online Influence and Sentiment of Fitness Tweets: Analysis of Two Million Fitness Tweets
por: Vickey, Theodore, et al.
Publicado: (2017)