Cargando…
Automatically Detecting Failures in Natural Language Processing Tools for Online Community Text
BACKGROUND: The prevalence and value of patient-generated health text are increasing, but processing such text remains problematic. Although existing biomedical natural language processing (NLP) tools are appealing, most were developed to process clinician- or researcher-generated text, such as clin...
Autores principales: | Park, Albert, Hartzler, Andrea L, Huh, Jina, McDonald, David W, Pratt, Wanda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications Inc.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642409/ https://www.ncbi.nlm.nih.gov/pubmed/26323337 http://dx.doi.org/10.2196/jmir.4612 |
Ejemplares similares
-
“How Did We Get Here?”: Topic Drift in Online Health Discussions
por: Park, Albert, et al.
Publicado: (2016) -
Automatic rating of therapist facilitative interpersonal skills in text: A natural language processing application
por: Zech, James M., et al.
Publicado: (2022) -
Use and impact of an online community for hospital patients
por: Haldar, Shefali, et al.
Publicado: (2020) -
Text Mining and Natural Language Processing Approaches for Automatic Categorization of Lay Requests to Web-Based Expert Forums
por: Himmel, Wolfgang, et al.
Publicado: (2009) -
Natural Language Processing in Diagnostic Texts from Nephropathology
por: Legnar, Maximilian, et al.
Publicado: (2022)